2,766 research outputs found

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Quantum Query Complexity of Subgraph Isomorphism and Homomorphism

    Get PDF
    Let HH be a fixed graph on nn vertices. Let fH(G)=1f_H(G) = 1 iff the input graph GG on nn vertices contains HH as a (not necessarily induced) subgraph. Let αH\alpha_H denote the cardinality of a maximum independent set of HH. In this paper we show: Q(fH)=Ω(αHn),Q(f_H) = \Omega\left(\sqrt{\alpha_H \cdot n}\right), where Q(fH)Q(f_H) denotes the quantum query complexity of fHf_H. As a consequence we obtain a lower bounds for Q(fH)Q(f_H) in terms of several other parameters of HH such as the average degree, minimum vertex cover, chromatic number, and the critical probability. We also use the above bound to show that Q(fH)=Ω(n3/4)Q(f_H) = \Omega(n^{3/4}) for any HH, improving on the previously best known bound of Ω(n2/3)\Omega(n^{2/3}). Until very recently, it was believed that the quantum query complexity is at least square root of the randomized one. Our Ω(n3/4)\Omega(n^{3/4}) bound for Q(fH)Q(f_H) matches the square root of the current best known bound for the randomized query complexity of fHf_H, which is Ω(n3/2)\Omega(n^{3/2}) due to Gr\"oger. Interestingly, the randomized bound of Ω(αHn)\Omega(\alpha_H \cdot n) for fHf_H still remains open. We also study the Subgraph Homomorphism Problem, denoted by f[H]f_{[H]}, and show that Q(f[H])=Ω(n)Q(f_{[H]}) = \Omega(n). Finally we extend our results to the 33-uniform hypergraphs. In particular, we show an Ω(n4/5)\Omega(n^{4/5}) bound for quantum query complexity of the Subgraph Isomorphism, improving on the previously known Ω(n3/4)\Omega(n^{3/4}) bound. For the Subgraph Homomorphism, we obtain an Ω(n3/2)\Omega(n^{3/2}) bound for the same.Comment: 16 pages, 2 figure

    Formulas vs. Circuits for Small Distance Connectivity

    Full text link
    We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance k(n)k(n) Connectivity, which asks whether two specified nodes in a graph of size nn are connected by a path of length at most k(n)k(n). This problem is solvable (by the recursive doubling technique) on {\bf circuits} of depth O(logk)O(\log k) and size O(kn3)O(kn^3). In contrast, we show that solving this problem on {\bf formulas} of depth logn/(loglogn)O(1)\log n/(\log\log n)^{O(1)} requires size nΩ(logk)n^{\Omega(\log k)} for all k(n)loglognk(n) \leq \log\log n. As corollaries: (i) It follows that polynomial-size circuits for Distance k(n)k(n) Connectivity require depth Ω(logk)\Omega(\log k) for all k(n)loglognk(n) \leq \log\log n. This matches the upper bound from recursive doubling and improves a previous Ω(loglogk)\Omega(\log\log k) lower bound of Beame, Pitassi and Impagliazzo [BIP98]. (ii) We get a tight lower bound of sΩ(d)s^{\Omega(d)} on the size required to simulate size-ss depth-dd circuits by depth-dd formulas for all s(n)=nO(1)s(n) = n^{O(1)} and d(n)logloglognd(n) \leq \log\log\log n. No lower bound better than sΩ(1)s^{\Omega(1)} was previously known for any d(n)O(1)d(n) \nleq O(1). Our proof technique is centered on a new notion of pathset complexity, which roughly speaking measures the minimum cost of constructing a set of (partial) paths in a universe of size nn via the operations of union and relational join, subject to certain density constraints. Half of our proof shows that bounded-depth formulas solving Distance k(n)k(n) Connectivity imply upper bounds on pathset complexity. The other half is a combinatorial lower bound on pathset complexity

    Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers

    Get PDF
    The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for f(xy)f(x \wedge y) and f(xy)f(x\oplus y) with monotone functions ff, where \wedge and \oplus are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions ff which alternate values for a relatively small number of times on any monotone path from 0n0^n to 1n1^n. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers

    Invariant Generation through Strategy Iteration in Succinctly Represented Control Flow Graphs

    Full text link
    We consider the problem of computing numerical invariants of programs, for instance bounds on the values of numerical program variables. More specifically, we study the problem of performing static analysis by abstract interpretation using template linear constraint domains. Such invariants can be obtained by Kleene iterations that are, in order to guarantee termination, accelerated by widening operators. In many cases, however, applying this form of extrapolation leads to invariants that are weaker than the strongest inductive invariant that can be expressed within the abstract domain in use. Another well-known source of imprecision of traditional abstract interpretation techniques stems from their use of join operators at merge nodes in the control flow graph. The mentioned weaknesses may prevent these methods from proving safety properties. The technique we develop in this article addresses both of these issues: contrary to Kleene iterations accelerated by widening operators, it is guaranteed to yield the strongest inductive invariant that can be expressed within the template linear constraint domain in use. It also eschews join operators by distinguishing all paths of loop-free code segments. Formally speaking, our technique computes the least fixpoint within a given template linear constraint domain of a transition relation that is succinctly expressed as an existentially quantified linear real arithmetic formula. In contrast to previously published techniques that rely on quantifier elimination, our algorithm is proved to have optimal complexity: we prove that the decision problem associated with our fixpoint problem is in the second level of the polynomial-time hierarchy.Comment: 35 pages, conference version published at ESOP 2011, this version is a CoRR version of our submission to Logical Methods in Computer Scienc

    Boolean networks synchronism sensitivity and XOR circulant networks convergence time

    Full text link
    In this paper are presented first results of a theoretical study on the role of non-monotone interactions in Boolean automata networks. We propose to analyse the contribution of non-monotony to the diversity and complexity in their dynamical behaviours according to two axes. The first one consists in supporting the idea that non-monotony has a peculiar influence on the sensitivity to synchronism of such networks. It leads us to the second axis that presents preliminary results and builds an understanding of the dynamical behaviours, in particular concerning convergence times, of specific non-monotone Boolean automata networks called XOR circulant networks.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249
    corecore