138 research outputs found

    Adaptive Latency Insensitive Protocols andElastic Circuits with Early Evaluation: A Comparative Analysis

    Get PDF
    AbstractLatency Insensitive Protocols (LIP) and Elastic Circuits (EC) solve the same problem of rendering a design tolerant to additional latencies caused by wires or computational elements. They are performance-limited by a firing semantics that enforces coherency through a lazy evaluation rule: Computation is enabled if all inputs to a block are simultaneously available. Adaptive LIP's (ALIP) and EC with early evaluation (ECEE) increase the performance by relaxing the evaluation rule: Computation is enabled as soon as the subset of inputs needed at a given time is available. Their difference in terms of implementation and behavior in selected cases justifies the need for the comparative analysis reported in this paper. Results have been obtained through simple examples, a single representative case-study already used in the context of both LIP's and EC and through extensive simulations over a suite of benchmarks

    Fred: an architecture for a self-timed decoupled computer

    Get PDF
    Journal ArticleDecoupled computer architectures provide an effective means of exploiting instruction level parallelism. Self-timed micropipeline systems are inherently decoupled due to the elastic nature of the basic FIFO structure, and may be ideally suited for constructing decoupled computer architectures. Fred is a self-timed decoupled, pipelined computer architecture based on micropipelines. We present the architecture of Fred, with specific details on a micropipelined implementation that includes support for multiple functional units and out-of- order instruction completion due to the self-timed decoupling

    Fred: an architecture for a self-timed decoupled computer

    Get PDF
    Journal ArticleDecoupled computer architectures provide an effective means of exploiting instruction level parallelism. Selftimed micropipeline systems are inherently decoupled due to the elastic nature of the basic FIFO structure, and may be ideally suited for constructing decoupled computer architectures. Fred is a self-timed decoupled, pipelined computer architecture based on micropipelines. We present the architecture of Fred, with specific details on a micropipelined implementation that includes support for multiple functional units and out-of-order instruction completion due to the self-timed decoupling

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Practical advances in asynchronous design

    Get PDF
    Journal ArticleRecent practical advances in asynchronous circuit and system design have resulted in renewed interest by circuit designers. Asynchronous systems are being viewed as in increasingly viable alternative to globally synchronous system organization. This tutorial will present the current state of the art in asynchronous circuit and system design in three different areas. The first section details asynchronous control systems. The second describes a variety of approaches to asynchronous datapaths. The third section is on asynchronous and self-timed circuits applied to the design of general purpose processors

    Investigation of the Benefits of Interlocked Synchronous Pipelines

    Get PDF
    The majority of today’s digital circuits use synchronous pipelines. As the technology nodes get smaller, these pipelines are facing problems with area, power, and timing. One of the major sources of power consumption is the global clock and stall signals. These signals have to be routed across large sections of the chip, and with regards to stalling the pipeline, often face significant timing issues. One solution, developed by Hans M. Jacobson et al., is “Synchronous Interlocked Pipelines”. This pipeline design combines synchronous pipelines with the handshaking of asynchronous pipelines. Asynchronous pipelines are less power intensive because they send acknowledge and request signals to neighboring stages that allow stages to turn off when not being used. Jacobson et al. use this handshaking technique to create local valid and stall signals instead of using global ones. To test the benefits of this design, an asynchronous pipeline, synchronous pipeline, and interlocked synchronous pipeline were built using a generic 45 nm library. Comparisons showed that while the asynchronous and interlocked synchronous pipelines took up 4 times more area than the synchronous pipeline, the asynchronous pipeline had the highest throughput of the three pipeline designs, followed by the interlocked synchronous pipeline. The synchronous pipeline had the worst throughput

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version
    corecore