87,855 research outputs found

    Path deviations outperform approximate stability in heterogeneous congestion games

    Get PDF
    We consider non-atomic network congestion games with heterogeneous players where the latencies of the paths are subject to some bounded deviations. This model encompasses several well-studied extensions of the classical Wardrop model which incorporate, for example, risk-aversion, altruism or travel time delays. Our main goal is to analyze the worst-case deterioration in social cost of a perturbed Nash flow (i.e., for the perturbed latencies) with respect to an original Nash flow. We show that for homogeneous players perturbed Nash flows coincide with approximate Nash flows and derive tight bounds on their inefficiency. In contrast, we show that for heterogeneous populations this equivalence does not hold. We derive tight bounds on the inefficiency of both perturbed and approximate Nash flows for arbitrary player sensitivity distributions. Intuitively, our results suggest that the negative impact of path deviations (e.g., caused by risk-averse behavior or latency perturbations) is less severe than approximate stability (e.g., caused by limited responsiveness or bounded rationality). We also obtain a tight bound on the inefficiency of perturbed Nash flows for matroid congestion games and homogeneous populations if the path deviations can be decomposed into edge deviations. In particular, this provides a tight bound on the Price of Risk-Aversion for matroid congestion games

    Non-centralized Control for Flow-based Distribution Networks: A Game-theoretical Insight

    Get PDF
    This paper solves a data-driven control problem for a flow-based distribution network with two objectives: a resource allocation and a fair distribution of costs. These objectives represent both cooperation and competition directions. It is proposed a solution that combines either a centralized or distributed cooperative game approach using the Shapley value to determine a proper partitioning of the system and a fair communication cost distribution. On the other hand, a decentralized noncooperative game approach computing the Nash equilibrium is used to achieve the control objective of the resource allocation under a non-complete information topology. Furthermore, an invariant-set property is presented and the closed-loop system stability is analyzed for the non cooperative game approach. Another contribution regarding the cooperative game approach is an alternative way to compute the Shapley value for the proposed specific characteristic function. Unlike the classical cooperative-games approach, which has a limited application due to the combinatorial explosion issues, the alternative method allows calculating the Shapley value in polynomial time and hence can be applied to large-scale problems.Generalitat de Catalunya FI 2014Ministerio de Ciencia y Educación DPI2016-76493-C3-3-RMinisterio de Ciencia y Educación DPI2008-05818Proyecto europeo FP7-ICT DYMASO

    Tight Inefficiency Bounds for Perception-Parameterized Affine Congestion Games

    Get PDF
    Congestion games constitute an important class of non-cooperative games which was introduced by Rosenthal in 1973. In recent years, several extensions of these games were proposed to incorporate aspects that are not captured by the standard model. Examples of such extensions include the incorporation of risk sensitive players, the modeling of altruistic player behavior and the imposition of taxes on the resources. These extensions were studied intensively with the goal to obtain a precise understanding of the inefficiency of equilibria of these games. In this paper, we introduce a new model of congestion games that captures these extensions (and additional ones) in a unifying way. The key idea here is to parameterize both the perceived cost of each player and the social cost function of the system designer. Intuitively, each player perceives the load induced by the other players by an extent of {\rho}, while the system designer estimates that each player perceives the load of all others by an extent of {\sigma}. The above mentioned extensions reduce to special cases of our model by choosing the parameters {\rho} and {\sigma} accordingly. As in most related works, we concentrate on congestion games with affine latency functions here. Despite the fact that we deal with a more general class of congestion games, we manage to derive tight bounds on the price of anarchy and the price of stability for a large range of pa- rameters. Our bounds provide a complete picture of the inefficiency of equilibria for these perception-parameterized congestion games. As a result, we obtain tight bounds on the price of anarchy and the price of stability for the above mentioned extensions. Our results also reveal how one should "design" the cost functions of the players in order to reduce the price of anar- chy

    Designing Network Protocols for Good Equilibria

    Get PDF
    Designing and deploying a network protocol determines the rules by which end users interact with each other and with the network. We consider the problem of designing a protocol to optimize the equilibrium behavior of a network with selfish users. We consider network cost-sharing games, where the set of Nash equilibria depends fundamentally on the choice of an edge cost-sharing protocol. Previous research focused on the Shapley protocol, in which the cost of each edge is shared equally among its users. We systematically study the design of optimal cost-sharing protocols for undirected and directed graphs, single-sink and multicommodity networks, and different measures of the inefficiency of equilibria. Our primary technical tool is a precise characterization of the cost-sharing protocols that induce only network games with pure-strategy Nash equilibria. We use this characterization to prove, among other results, that the Shapley protocol is optimal in directed graphs and that simple priority protocols are essentially optimal in undirected graphs

    Learning Cooperative Games

    Full text link
    This paper explores a PAC (probably approximately correct) learning model in cooperative games. Specifically, we are given mm random samples of coalitions and their values, taken from some unknown cooperative game; can we predict the values of unseen coalitions? We study the PAC learnability of several well-known classes of cooperative games, such as network flow games, threshold task games, and induced subgraph games. We also establish a novel connection between PAC learnability and core stability: for games that are efficiently learnable, it is possible to find payoff divisions that are likely to be stable using a polynomial number of samples.Comment: accepted to IJCAI 201

    Atomic Routing Games on Maximum Congestion

    Full text link
    We study atomic routing congestion games in which each player chooses a path in the network from its strategy set (a collection of paths) with the objective to minimize the maximum congestion along any edge on its selected path. The social cost is the global maximum congestion on any edge in the network. We show that for arbitrary routing games, the price of stability is 1, and the price of anarchy, PoA, is bounded by κ − 1 ≤ PoA ≤ c(κ 2 + log 2 n), where κ is the length of the longest cycle in the network, n is the size of the network and c is a constant. Further, any best response dynamic converges to a Nash equilibrium. Our bounds show that for maximum congestion games, the topology of the network, in particular the length of cycles, plays an important role in determining the quality of the Nash equilibria. A fundamental issue in the management of large scale communication networks is to route the packet traffic so as to optimize the network performance. Our measure of network performance is the worst bottleneck (most used link) in the system. The model we use for network traffic is that of finite, unsplittable packets (atomic flow), and each packet’s path is controlled independentl
    corecore