198 research outputs found

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property

    CIC : an integrated approach to checkpointing in mobile agent systems

    Get PDF
    Internet and Mobile Computing Lab (in Department of Computing)Refereed conference paper2006-2007 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Automating Fault Tolerance in High-Performance Computational Biological Jobs Using Multi-Agent Approaches

    Get PDF
    Background: Large-scale biological jobs on high-performance computing systems require manual intervention if one or more computing cores on which they execute fail. This places not only a cost on the maintenance of the job, but also a cost on the time taken for reinstating the job and the risk of losing data and execution accomplished by the job before it failed. Approaches which can proactively detect computing core failures and take action to relocate the computing core's job onto reliable cores can make a significant step towards automating fault tolerance. Method: This paper describes an experimental investigation into the use of multi-agent approaches for fault tolerance. Two approaches are studied, the first at the job level and the second at the core level. The approaches are investigated for single core failure scenarios that can occur in the execution of parallel reduction algorithms on computer clusters. A third approach is proposed that incorporates multi-agent technology both at the job and core level. Experiments are pursued in the context of genome searching, a popular computational biology application. Result: The key conclusion is that the approaches proposed are feasible for automating fault tolerance in high-performance computing systems with minimal human intervention. In a typical experiment in which the fault tolerance is studied, centralised and decentralised checkpointing approaches on an average add 90% to the actual time for executing the job. On the other hand, in the same experiment the multi-agent approaches add only 10% to the overall execution time.Comment: Computers in Biology and Medicin

    Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

    Get PDF
    The rollback operation is a fundamental building block to support the correct execution of a speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, several solutions to reduce the execution cost of this operation have been proposed, either based on the creation of a checkpoint of previous simulation state images, or on the execution of negative copies of simulation events which are able to undo the updates on the state. In this paper, we explore the practical design and implementation of a state recoverability technique which allows to restore a previous simulation state either relying on checkpointing or on the reverse execution of the state updates occurred while processing events in forward mode. Differently from other proposals, we address the issue of executing backward updates in a fully-transparent and event granularity-independent way, by relying on static software instrumentation (targeting the x86 architecture and Linux systems) to generate at runtime reverse update code blocks (not to be confused with reverse events, proper of the reverse computing approach). These are able to undo the effects of a forward execution while minimizing the cost of the undo operation. We also present experimental results related to our implementation, which is released as free software and fully integrated into the open source ROOT-Sim (ROme OpTimistic Simulator) package. The experimental data support the viability and effectiveness of our proposal

    Rollback recovery with low overhead for fault tolerance in mobile ad hoc networks

    Get PDF
    AbstractMobile ad hoc networks (MANETs) have significantly enhanced the wireless networks by eliminating the need for any fixed infrastructure. Hence, these are increasingly being used for expanding the computing capacity of existing networks or for implementation of autonomous mobile computing Grids. However, the fragile nature of MANETs makes the constituent nodes susceptible to failures and the computing potential of these networks can be utilized only if they are fault tolerant. The technique of checkpointing based rollback recovery has been used effectively for fault tolerance in static and cellular mobile systems; yet, the implementation of existing protocols for MANETs is not straightforward. The paper presents a novel rollback recovery protocol for handling the failures of mobile nodes in a MANET using checkpointing and sender based message logging. The proposed protocol utilizes the routing protocol existing in the network for implementing a low overhead recovery mechanism. The presented recovery procedure at a node is completely domino-free and asynchronous. The protocol is resilient to the dynamic characteristics of the MANET; allowing a distributed application to be executed independently without access to any wired Grid or cellular network access points. We also present an algorithm to record a consistent global snapshot of the MANET

    Locality-driven checkpoint and recovery

    Get PDF
    Checkpoint and recovery are important fault-tolerance techniques for distributed systems. The two categories of existing strategies incur unacceptable performance cost either at run time or upon failure recovery, when applied to large-scale distributed systems. In particular, the large number of messages and processes in these systems causes either considerable checkpoint as well as logging overhead, or catastrophic global-wise recovery effect. This thesis proposes a locality-driven strategy for efficiently checkpointing and recovering such systems with both affordable runtime cost and controllable failure recoverability. Messages establish dependencies between distributed processes, which can be either preserved by coordinated checkpoints or removed via logging. Existing strategies enforce a uniform handling policy for all message dependencies, and hence gains advantage at one end but bears disadvantage at the other. In this thesis, a generic theory of Quasi-Atomic Recovery has been formulated to accommodate message handling requirements of both kinds, and to allow using different message handling methods together. Quasi-atomicity of recovery blocks implies proper confinement of recoveries, and thus enables localization of checkpointing and recovery around such a block and consequently a hybrid strategy with combined advantages from both ends. A strategy of group checkpointing with selective logging has been proposed, based on the observation of message localization around 'locality regions' in distributed systems. In essence, a group-wise coordinated checkpoint is created around such a region and only the few inter-region messages are logged subsequently. Runtime overhead is optimized due to largely reduced logging efforts, and recovery spread is as localized as region-wise. Various protocols have been developed to provide trade-offs between flexibility and performance. Also proposed is the idea of process clone that can be used to effectively remove program-order recovery dependencies among successive group checkpoints and thus to stop inter-group recovery spread. Distributed executions exhibit locality of message interactions. Such locality originates from resolving distributed dependency localization via message passing, and appears as a hierarchical 'region-transition' pattern. A bottom-up approach has been proposed to identify those regions, by detecting popular recurrence patterns from individual processes as 'locality intervals', and then composing them into 'locality regions' based on their tight message coupling relations between each other. Experiments conducted on real-life applications have shown the existence of hierarchical locality regions and have justified the feasibility of this approach. Performance optimization of group checkpoint strategies has to do with their uses of locality. An abstract performance measure has been-proposed to properly integrate both runtime overhead and failure recoverability in a region-wise marner. Taking this measure as the optimization objective, a greedy heuristic has been introduced to decompose a given distributed execution into optimized regions. Analysis implies that an execution pattern with good locality leads to good optimized performance, and the locality pattern itself can serve as a good candidate for the optimal decomposition. Consequently, checkpoint protocols have been developed to efficiently identify optimized regions in such an execution, with assistance of either design-time or runtime knowledge

    Adaptive recovery for mobile environments

    Full text link

    Survey of Autonomic Computing and Experiments on JMX-based Autonomic Features

    Get PDF
    Autonomic Computing (AC) aims at solving the problem of managing the rapidly-growing complexity of Information Technology systems, by creating self-managing systems. In this thesis, we have surveyed the progress of the AC field, and studied the requirements, models and architectures of AC. The commonly recognized AC requirements are four properties - self-configuring, self-healing, self-optimizing, and self-protecting. The recommended software architecture is the MAPE-K model containing four modules, namely - monitor, analyze, plan and execute, as well as the knowledge repository. In the modern software marketplace, Java Management Extensions (JMX) has facilitated one function of the AC requirements - monitoring. Using JMX, we implemented a package that attempts to assist programming for AC features including socket management, logging, and recovery of distributed computation. In the experiments, we have not only realized the powerful Java capabilities that are unknown to many educators, we also illustrated the feasibility of learning AC in senior computer science courses
    • 

    corecore