41,991 research outputs found

    New non-linearity parameters of Boolean functions

    Get PDF
    The study of non-linearity (linearity) of Boolean function was initiated by Rothaus in 1976. The classical non-linearity of a Boolean function is the minimum Hamming distance of its truth table to that of affine functions. In this note we introduce new "multidimensional" non-linearity parameters (Nf,Hf)(N_f,H_f) for conventional and vectorial Boolean functions ff with mm coordinates in nn variables. The classical non-linearity may be treated as a 1-dimensional parameter in the new definition. rr-dimensional parameters for rβ‰₯2r\geq 2 are relevant to possible multidimensional extensions of the Fast Correlation Attack in stream ciphers and Linear Cryptanalysis in block ciphers. Besides we introduce a notion of optimal vectorial Boolean functions relevant to the new parameters. For r=1r=1 and even nβ‰₯2mn\geq 2m optimal Boolean functions are exactly perfect nonlinear functions (generalizations of Rothaus' bent functions) defined by Nyberg in 1991. By a computer search we find that this property holds for r=2,m=1,n=4r=2, m=1, n=4 too. That is an open problem for larger n,mn,m and rβ‰₯2r\geq 2. The definitions may be easily extended to qq-ary functions

    Constructions of Almost Optimal Resilient Boolean Functions on Large Even Number of Variables

    Full text link
    In this paper, a technique on constructing nonlinear resilient Boolean functions is described. By using several sets of disjoint spectra functions on a small number of variables, an almost optimal resilient function on a large even number of variables can be constructed. It is shown that given any mm, one can construct infinitely many nn-variable (nn even), mm-resilient functions with nonlinearity >2nβˆ’1βˆ’2n/2>2^{n-1}-2^{n/2}. A large class of highly nonlinear resilient functions which were not known are obtained. Then one method to optimize the degree of the constructed functions is proposed. Last, an improved version of the main construction is given.Comment: 14 pages, 2 table

    Oblivious Bounds on the Probability of Boolean Functions

    Full text link
    This paper develops upper and lower bounds for the probability of Boolean functions by treating multiple occurrences of variables as independent and assigning them new individual probabilities. We call this approach dissociation and give an exact characterization of optimal oblivious bounds, i.e. when the new probabilities are chosen independent of the probabilities of all other variables. Our motivation comes from the weighted model counting problem (or, equivalently, the problem of computing the probability of a Boolean function), which is #P-hard in general. By performing several dissociations, one can transform a Boolean formula whose probability is difficult to compute, into one whose probability is easy to compute, and which is guaranteed to provide an upper or lower bound on the probability of the original formula by choosing appropriate probabilities for the dissociated variables. Our new bounds shed light on the connection between previous relaxation-based and model-based approximations and unify them as concrete choices in a larger design space. We also show how our theory allows a standard relational database management system (DBMS) to both upper and lower bound hard probabilistic queries in guaranteed polynomial time.Comment: 34 pages, 14 figures, supersedes: http://arxiv.org/abs/1105.281
    • …
    corecore