34,012 research outputs found

    Full counting statistics of Majorana interferometers

    Full text link
    We study the full counting statistics of interferometers for chiral Majorana fermions with two incoming and two outgoing Dirac fermion channels. In the absence of interactions, the FCS can be obtained from the 4×44\times4 scattering matrix SS that relates the outgoing Dirac fermions to the incoming Dirac fermions. After presenting explicit expressions for the higher-order current correlations for a modified Hanbury Brown-Twiss interferometer, we note that the cumulant-generating function can be interpreted such that unit-charge transfer processes correspond to two independent half-charge transfer processes, or alternatively, to two independent electron-hole conversion processes. By a combination of analytical and numerical approaches, we verify that this factorization property holds for a general SO(4)SO(4) scattering matrix, i.e. for a general interferometer geometry.Comment: 22 pages, 3 figures, contributed to the special issue of Physica E "Frontiers in Quantum Electronic Transport - In Memory of Markus Buttiker

    Distilling common randomness from bipartite quantum states

    Full text link
    The problem of converting noisy quantum correlations between two parties into noiseless classical ones using a limited amount of one-way classical communication is addressed. A single-letter formula for the optimal trade-off between the extracted common randomness and classical communication rate is obtained for the special case of classical-quantum correlations. The resulting curve is intimately related to the quantum compression with classical side information trade-off curve Q(R)Q^*(R) of Hayden, Jozsa and Winter. For a general initial state we obtain a similar result, with a single-letter formula, when we impose a tensor product restriction on the measurements performed by the sender; without this restriction the trade-off is given by the regularization of this function. Of particular interest is a quantity we call ``distillable common randomness'' of a state: the maximum overhead of the common randomness over the one-way classical communication if the latter is unbounded. It is an operational measure of (total) correlation in a quantum state. For classical-quantum correlations it is given by the Holevo mutual information of its associated ensemble, for pure states it is the entropy of entanglement. In general, it is given by an optimization problem over measurements and regularization; for the case of separable states we show that this can be single-letterized.Comment: 22 pages, LaTe

    Wigner representation for polarization-momentum hyperentanglement generated in parametric down conversion, and its application to complete Bell-state measurement

    Full text link
    We apply the Wigner function formalism to the study of two-photon polarization-momentum hyperentanglement generated in parametric down conversion. It is shown that the consideration of a higher number of degrees of freedom is directly related to the extraction of additional uncorrelated sets of zeropoint modes at the source. We present a general expression for the description of the quantum correlations corresponding to the sixteen Bell base states, in terms of four beams whose amplitudes are correlated through the stochastic properties of the zeropoint field. A detailed analysis of the two experiments on complete Bell-state measurement included in [Walborn et al., Phys. Rev. A 68, 042313 (2003)] is made, emphasizing the role of the zeropoint field. Finally, we investigate the relationship between the zeropoint inputs at the source and the analysers, and the limits on optimal Bell-state measurement.Comment: 28 pages, 4 figure

    Local model of entangled photon experiments compatible with quantum predictions based on the reality of the vacuum fields

    Full text link
    Arguments are provided for the reality of the quantum vacuum fields. A polarization correlation experiment with two maximally entangled photons created by spontaneous parametric down-conversion is studied in the Weyl-Wigner formalism, that reproduces the quantum predictions. An interpretation is proposed in terms of stochastic processes assuming that the quantum vacuum fields are real. This proves that local realism is compatible with a violation of Bell inequalities, thus rebutting the claim that it has been refuted by experiments. Entanglement appears as a correlation between fluctuations of a signal field and vacuum fields. Key words; local realism, Bell inequalities, entangled photons, Weyl-Wigner, loopholes,vacuum fieldsComment: 20 pages. This is the final form of the article. The last section has been substantially modifie
    corecore