1,219 research outputs found

    Fair termination revisited - with delay

    Get PDF
    AbstractA proof method for establishing the fair termination and total correctness of both nondeterministic and concurrent programs is presented. The method calls for the extension of state by auxiliary delay variables which count down to the instant in which certain action will be scheduled. It then uses well-founded ranking to prove fair termination allowing nested fair selection and loops

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    A Theory of Formal Synthesis via Inductive Learning

    Full text link
    Formal synthesis is the process of generating a program satisfying a high-level formal specification. In recent times, effective formal synthesis methods have been proposed based on the use of inductive learning. We refer to this class of methods that learn programs from examples as formal inductive synthesis. In this paper, we present a theoretical framework for formal inductive synthesis. We discuss how formal inductive synthesis differs from traditional machine learning. We then describe oracle-guided inductive synthesis (OGIS), a framework that captures a family of synthesizers that operate by iteratively querying an oracle. An instance of OGIS that has had much practical impact is counterexample-guided inductive synthesis (CEGIS). We present a theoretical characterization of CEGIS for learning any program that computes a recursive language. In particular, we analyze the relative power of CEGIS variants where the types of counterexamples generated by the oracle varies. We also consider the impact of bounded versus unbounded memory available to the learning algorithm. In the special case where the universe of candidate programs is finite, we relate the speed of convergence to the notion of teaching dimension studied in machine learning theory. Altogether, the results of the paper take a first step towards a theoretical foundation for the emerging field of formal inductive synthesis

    Simulation of Two-Way Pushdown Automata Revisited

    Get PDF
    The linear-time simulation of 2-way deterministic pushdown automata (2DPDA) by the Cook and Jones constructions is revisited. Following the semantics-based approach by Jones, an interpreter is given which, when extended with random-access memory, performs a linear-time simulation of 2DPDA. The recursive interpreter works without the dump list of the original constructions, which makes Cook's insight into linear-time simulation of exponential-time automata more intuitive and the complexity argument clearer. The simulation is then extended to 2-way nondeterministic pushdown automata (2NPDA) to provide for a cubic-time recognition of context-free languages. The time required to run the final construction depends on the degree of nondeterminism. The key mechanism that enables the polynomial-time simulations is the sharing of computations by memoization.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    A Temporal Logic for Hyperproperties

    Full text link
    Hyperproperties, as introduced by Clarkson and Schneider, characterize the correctness of a computer program as a condition on its set of computation paths. Standard temporal logics can only refer to a single path at a time, and therefore cannot express many hyperproperties of interest, including noninterference and other important properties in security and coding theory. In this paper, we investigate an extension of temporal logic with explicit path variables. We show that the quantification over paths naturally subsumes other extensions of temporal logic with operators for information flow and knowledge. The model checking problem for temporal logic with path quantification is decidable. For alternation depth 1, the complexity is PSPACE in the length of the formula and NLOGSPACE in the size of the system, as for linear-time temporal logic

    Matrix Code

    Full text link
    Matrix Code gives imperative programming a mathematical semantics and heuristic power comparable in quality to functional and logic programming. A program in Matrix Code is developed incrementally from a specification in pre/post-condition form. The computations of a code matrix are characterized by powers of the matrix when it is interpreted as a transformation in a space of vectors of logical conditions. Correctness of a code matrix is expressed in terms of a fixpoint of the transformation. The abstract machine for Matrix Code is the dual-state machine, which we present as a variant of the classical finite-state machine.Comment: 39 pages, 19 figures; extensions and minor correction

    A Casual Tour Around a Circuit Complexity Bound

    Full text link
    I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the perspective of someone trying to discover it.Comment: 21 pages, 2 figures. An earlier version appeared in SIGACT News, September 201
    • …
    corecore