5,329 research outputs found

    Tactics, Training, Technology: The RCN’s Summer of Success, July–September 1942

    Get PDF

    Will income inequality cause a middle-income trap in Asia? Bruegel Working Paper 2013/06, 10 October 2013

    Get PDF
    The Asian economy is expected to realise favourable growth during the first half of this century, but there is no guarantee. There is a discussion about a ‘middle-income trap’, which refers to a country that has realised rapid growth to become a middle-income country but is unable to grow further. A middle-income trap could occur not only if there is a delay in shifting the economy toward a productivity-driven structure, but also if there is a worsening of income distribution.We consider this in line with the theories of development economics and through a quantitative analysis. The relationship between income inequality and the trap can be explained by the Kuznets hypothesis and the basic-needs approach. Our quantitative analysis supports the Kuznets hypothesis, and indicates that,although a low-income country can accelerate its economic growth with the worsening of income distribution as an engine, a middle income country would experience a decreasing growth rate if it fails to narrow the income gap between the top and bottom income groups. The results also show that the basic-needs approach is also applicable in practice, and imply that the improvement of access to secondary education is important. A sensitivity analysis for three Asian upper-middle-income countries(China, Malaysia and Thailand) also shows that the situation related to a middle-income trap is worse than average in China and Malaysia. These two countries, according to the result of the sensitivity analysis, should urgently improve access to secondary education and should implement income redistribution measures to develop high-tech industries, before their demographic dividends expire. Income redistribution includes the narrowing of rural urban income disparities, benefits to low-income individuals, direct income transfers, vouchers or free provision of education and health-care, and so on, but none of these are simple to implement

    Design and development of an automated metered dose inhaler (MDI) for asthmatic patient

    Get PDF
    To date, infant with illness associated with the pulmonary airway is treated by a doctor using a spacer device with metered dose inhaler (MDI) to allow the infant to breathe in the medication known as salbutamol. Current asthma spacer does not provide systematic way of monitoring and displaying the percentage value of the propellant. Furthermore, user non-compliance is found to contribute towards longer recovery rate. Therefore, this product is designed and developed capable of detecting the propellant level inhaled by the infant by using a MQ-6 gas sensor and monitoring its percentage value. The display of available puffs of MDI canister and the battery indicator for the system are also included in the device. The automated actuation MDI was required a push button to press the MDI canister where this project utilised Arduino Nano as the microcontroller to control the system operation and all the reading values will be displayed on the OLED. RGB LED is also used to visualise the propellant level. The obtained results of the detection of propellant in voltage from the MQ-6 gas sensors were analysed in MATLAB to make comparison through the obtained results. Without propellant, voltage recorded is 0.640±0.024V whereas high concentration of propellant displayed voltage of 1.126±0.020V. The mean standard error rate of propellant detection is 5.584%. The first design of the actuation device and interface monitoring display of automated MDI were recorded the highest percentage which is 75% and 80%. The concentration of propellant depends on the ambient temperature due to the MQ-6 gas sensor required minimum working temperature between 20oC to 22oC. The mean weight of the MDI canister for each puff is 6.257mg and the standard deviation is 3.629mg. Due to experiment conducted, the speed and pressure of pressing MDI canister causes variability in the released of salbutamol and propellant. Observation proved that ambient temperature and propellant released amount also influenced the final reading from the automated actuation MDI
    • 

    corecore