24 research outputs found

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: ‱ Introduction‱ Internet of Things Strategic Research and Innovation Agenda‱ Internet of Things in the industrial context: Time for deployment.‱ Integration of heterogeneous smart objects, applications and services‱ Evolution from device to semantic and business interoperability‱ Software define and virtualization of network resources‱ Innovation through interoperability and standardisation when everything is connected anytime at anyplace‱ Dynamic context-aware scalable and trust-based IoT Security, Privacy framework‱ Federated Cloud service management and the Internet of Things‱ Internet of Things Application

    Les opérateurs sauront-ils survivre dans un monde en constante évolution? Considérations techniques conduisant à des scénarios de rupture

    Get PDF
    Le secteur des tĂ©lĂ©communications passe par une phase dĂ©licate en raison de profondes mutations technologiques, principalement motivĂ©es par le dĂ©veloppement de l'Internet. Elles ont un impact majeur sur l'industrie des tĂ©lĂ©communications dans son ensemble et, par consĂ©quent, sur les futurs dĂ©ploiements des nouveaux rĂ©seaux, plateformes et services. L'Ă©volution de l'Internet a un impact particuliĂšrement fort sur les opĂ©rateurs des tĂ©lĂ©communications (Telcos). En fait, l'industrie des tĂ©lĂ©communications est Ă  la veille de changements majeurs en raison de nombreux facteurs, comme par exemple la banalisation progressive de la connectivitĂ©, la domination dans le domaine des services de sociĂ©tĂ©s du web (Webcos), l'importance croissante de solutions Ă  base de logiciels et la flexibilitĂ© qu'elles introduisent (par rapport au systĂšme statique des opĂ©rateurs tĂ©lĂ©coms). Cette thĂšse Ă©labore, propose et compare les scĂ©narios possibles basĂ©s sur des solutions et des approches qui sont technologiquement viables. Les scĂ©narios identifiĂ©s couvrent un large Ă©ventail de possibilitĂ©s: 1) Telco traditionnel; 2) Telco transporteur de Bits; 3) Telco facilitateur de Plateforme; 4) Telco fournisseur de services; 5) Disparition des Telco. Pour chaque scĂ©nario, une plateforme viable (selon le point de vue des opĂ©rateurs tĂ©lĂ©coms) est dĂ©crite avec ses avantages potentiels et le portefeuille de services qui pourraient ĂȘtre fournisThe telecommunications industry is going through a difficult phase because of profound technological changes, mainly originated by the development of the Internet. They have a major impact on the telecommunications industry as a whole and, consequently, the future deployment of new networks, platforms and services. The evolution of the Internet has a particularly strong impact on telecommunications operators (Telcos). In fact, the telecommunications industry is on the verge of major changes due to many factors, such as the gradual commoditization of connectivity, the dominance of web services companies (Webcos), the growing importance of software based solutions that introduce flexibility (compared to static system of telecom operators). This thesis develops, proposes and compares plausible future scenarios based on future solutions and approaches that will be technologically feasible and viable. Identified scenarios cover a wide range of possibilities: 1) Traditional Telco; 2) Telco as Bit Carrier; 3) Telco as Platform Provider; 4) Telco as Service Provider; 5) Telco Disappearance. For each scenario, a viable platform (from the point of view of telecom operators) is described highlighting the enabled service portfolio and its potential benefitsEVRY-INT (912282302) / SudocSudocFranceF

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    A formal architecture-centric and model driven approach for the engineering of science gateways

    Get PDF
    From n-Tier client/server applications, to more complex academic Grids, or even the most recent and promising industrial Clouds, the last decade has witnessed significant developments in distributed computing. In spite of this conceptual heterogeneity, Service-Oriented Architecture (SOA) seems to have emerged as the common and underlying abstraction paradigm, even though different standards and technologies are applied across application domains. Suitable access to data and algorithms resident in SOAs via so-called ‘Science Gateways’ has thus become a pressing need in order to realize the benefits of distributed computing infrastructures.In an attempt to inform service-oriented systems design and developments in Grid-based biomedical research infrastructures, the applicant has consolidated work from three complementary experiences in European projects, which have developed and deployed large-scale production quality infrastructures and more recently Science Gateways to support research in breast cancer, pediatric diseases and neurodegenerative pathologies respectively. In analyzing the requirements from these biomedical applications the applicant was able to elaborate on commonly faced issues in Grid development and deployment, while proposing an adapted and extensible engineering framework. Grids implement a number of protocols, applications, standards and attempt to virtualize and harmonize accesses to them. Most Grid implementations therefore are instantiated as superposed software layers, often resulting in a low quality of services and quality of applications, thus making design and development increasingly complex, and rendering classical software engineering approaches unsuitable for Grid developments.The applicant proposes the application of a formal Model-Driven Engineering (MDE) approach to service-oriented developments, making it possible to define Grid-based architectures and Science Gateways that satisfy quality of service requirements, execution platform and distribution criteria at design time. An novel investigation is thus presented on the applicability of the resulting grid MDE (gMDE) to specific examples and conclusions are drawn on the benefits of this approach and its possible application to other areas, in particular that of Distributed Computing Infrastructures (DCI) interoperability, Science Gateways and Cloud architectures developments

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Digital Twin in the IoT context: a survey on technical features, scenarios and architectural models

    Get PDF
    Digital Twin is an emerging concept that is gaining attention in various industries. It refers to the ability to clone a physical object into a software counterpart. The softwarized object, termed logical object, reflects all the important properties and characteristics of the original object within a specific application context. To fully determine the expected properties of the Digital Twin, this paper surveys the state of the art starting from the original definition within the manufacturing industry. It takes into account related proposals emerging in other fields, namely, Augmented and Virtual Reality (e.g., avatars), Multi-agent systems, and virtualization. This survey thereby allows for the identification of an extensive set of Digital Twin features that point to the “softwarization” of physical objects. To properly consolidate a shared Digital Twin definition, a set of foundational properties is identified and proposed as a common ground outlining the essential characteristics (must-haves) of a Digital Twin. Once the Digital Twin definition has been consolidated, its technical and business value is discussed in terms of applicability and opportunities. Four application scenarios illustrate how the Digital Twin concept can be used and how some industries are applying it. The scenarios also lead to a generic DT architectural Model. This analysis is then complemented by the identification of software architecture models and guidelines in order to present a general functional framework for the Digital Twin. The paper, eventually, analyses a set of possible evolution paths for the Digital Twin considering its possible usage as a major enabler for the softwarization process

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business
    corecore