31 research outputs found

    Precise Localization and Control of Catalytic Janus Micromotors Using Weak Magnetic Fields

    Get PDF
    We experimentally demonstrate the precise localization of spherical Pt-Silica Janus micromotors (diameter 5 μm) under the influence of controlled magnetic fields. First, we control the motion of the Janus micromotors in two-dimensional (2D) space. The control system achieves precise localization within an average region-of-convergence of 7 μm. Second, we show that these micromotors provide sufficient propulsion force, allowing them to overcome drag and gravitational forces and move both downwards and upwards. This propulsion is studied by moving the micromotors in three-dimensional (3D) space. The micromotors move downwards and upwards at average speeds of 19.1 μm/s and 9.8 μm/s, respectively. Moreover, our closed-loop control system achieves localization in 3D space within an average region-of-convergence of 6.3 μm in diameter. The precise motion control and localization of the Janus micromotors in 2D and 3D spaces provides broad possibilities for nanotechnology applications

    Helical Propulsion in a Viscous Heterogeneous Medium

    Get PDF

    An experimental comparison of path planning techniques applied to micro-sized magnetic agents

    Get PDF
    Micro-sized agents can be used in applications suchas microassembly, micromanipulation, and minimally invasive surgeries. Magnetic agents such as paramagnetic microparticles can be controlled to deliver pharmaceutical agents to difficult-toaccess regions within the human body. In order to autonomously move these microparticles toward a target/goal area, an obstaclefree path must be computed using path planning algorithms. Several path planning algorithms have been developed in the literature, however, to the best of our knowledge, only few have been employed in an experimental scenario. In this paper we perform an experimental comparison of six path planning algorithms when applied to the motion control of paramagnetic microparticles. Among the families of deterministic and probabilistic path planners we select the ones that we consider the most fundamental, such as: A* with quadtrees, A* with uniform grids, D* Lite, Artificial Potential Field, Probabilistic Roadmap and Rapidly-exploring Random Tree. We consider a 2D environment made by both dynamic and static obstacles. Four scenarios are evaluated. Three metrics such as computation time, length of the trajectory performed by the microparticle, and time to reach the goal are used to compare the planners. Experimental results reveal equivalence between almost all the considered planners in terms of trajectory length and completion time. Concerning the computation time, A* with quadtrees and Artificial Potential Field achieve the best performances

    Catalytic Micro/Nanomotors: Propulsion Mechanisms, Fabrication, Control, and Applications

    Get PDF
    Micro-/nanomotors are self-propelled micro-/nanomachines, which are capable of converting the surrounding fuels into mechanical movement or force. Inspired by naturally occurring biomolecular motor proteins, scientists extensively paid great attentions to synthetic micro-/nanomotors. Especially, a number of researchers devoted their efforts onto catalytic micro-/nanomotors. In the past few decades, several advanced developments and excellent contributions have been made in catalytic micro-/nanomotors. The future of this research field can be bright, but some major existing challenges such as biocompatible materials and fuels, smart controlling, and specifically practical applications are still required to be resolved. Therefore, it is essential for us to learn the state of the art of catalytic micro-/nanomotors. In this chapter, the propulsion mechanisms, fabrication methods, controlling strategies, and potential applications of catalytic micro-/nanomotors are presented and summarized

    Rolled up microtubes for the capture, guidance and release of single spermatozoa

    Get PDF
    Hybride Mikroschwimmer, die einen biologischen Antrieb und eine künstlich hergestellte Mikrostruktur enthalten sind ein attraktiver Ansatz um kontrollierte Bewegung auf kleinstem Maßstab zu erreichen. In dieser Dissertation wird ein neuer hybrider Mikroschwimmer vorgestellt, der aus ferromagnetischen Nanomembranen besteht, die sich zu Mikroröhrchen aufrollen und in der Lage sind, einzelne Spermien einzufangen. Dieser Mikrobioroboter nutzt die starke Antriebskraft der Spermazelle um das magnetische Mikroröhrchen fortzubewegen. Die vorliegende Arbeit beschreibt, wie dieser Mikroschwimmer seine Bewegung vollzieht und wie verschiedene Faktoren wie Temperatur, Radius der Mikroröhrchen, Eindringtiefe der Spermien in das Röhrchen und Länge der Röhrchen einen Einfluss auf sein Verhalten haben. Richtungskontrolle wird durch externe magnetische Felder realisiert und es wird dargestellt, wie dies zur Trennung der Mikrobioroboter aus einer Mischung von Spermien und Mikroröhrchen genutzt werden kann. Weiterhin werden zwei Oberflächenmodifizierungsmethoden angewandt um die Kupplungseffizienz zwischen Mikroröhrchen und Spermien zu erhöhen. In diesen Methoden wird das extrazelluläre Protein Fibronektin auf die innere Röhrchenoberfläche aufgebracht und dient als Bindungsstoff für Spermien. Schließlich wird durch den Einbau temperatursensitiver Material in die Mikroröhrchen ein ferngesteuerter Freisetzungsmechanismus für die Spermazelle vorgestellt. Dabei falten sich die Mikroröhrchen bei kleinen Temperaturerhöhungen auf und setzen die Zelle frei. Diese Arbeit diskutiert letztendlich das Potential solch eines hybriden Mikroschwimmers für die Anwendung in assistierter Reproduktion.:TABLE OF CONTENTS SELBSTSTÄNDIGKEITSERKLÄRUNG 0 ABSTRACT 1 TABLE OF CONTENTS 3 1 MOTIVATION AND GOALS 5 1.1 MINIATURIZATION: “THERE IS PLENTY OF ROOM AT THE BOTTOM…” 5 1.2 SPERMBOTS: POTENTIAL IMPACT 7 2 BACKGROUND AND STATE-OF-THE-ART 11 2.1 MICROBIOROBOTICS 11 2.2 SPERM MORPHOLOGY AND THEIR JOURNEY TO THE EGG 15 2.3 INFERTILITY AND ASSISTED REPRODUCTION TECHNIQUES 19 2.4 SINGLE CELL RELEASE 22 2.5 STIMULI-RESPONSIVE MATERIALS 25 3 MATERIAL AND METHODS 29 3.1 ROLLED UP TECHNOLOGY 29 3.2 TREATMENT OF BOVINE SPERMATOZOA 32 3.2.1 Preparation of Spermbots 32 3.2.2 Speed Measurements 33 3.2.3 Separation On Chip 33 3.3 SURFACE MODIFICATION OF MICROTUBES 34 3.3.1 Surface Chemistry 35 3.3.2 Microcontact printing 39 3.4 POLYMER TUBE FABRICATION 44 3.4.1 Synthesis of photosensitive monomer 4-Acryloylbenzophenone 44 3.4.2 Synthesis of poly (N-isopropylacrylamide-co-Acryloylbenzophenone) 46 3.4.3 Photolithography of polymeric films 48 3.5 VIABILITY TESTS 51 4 RESULTS AND DISCUSSION 53 4.1 CHARACTERIZATION OF SPERMBOTS 55 4.2 TEMPERATURE INFLUENCE 60 4.3 MAGNETIC CONTROL 62 4.4 SEPARATION ON CHIP 68 4.5 EFFECT OF DECREASED MICROTUBE LENGTH 72 4.6 COUPLING EFFICIENCY 74 4.7 THERMORESPONSIVE POLYMERIC MICROTUBES FOR CELL RELEASE 80 4.8 SPERM VIABILITY TESTS 94 5 SUMMARY AND CONCLUSIONS 97 6 OUTLOOK 101 7 LIST OF FIGURES 107 8 LIST OF TABLES 113 9 ABBREVIATIONS 115 10 CURRICULUM VITAE 117 11 LIST OF PUBLICATIONS 119 JOURNAL ARTICLES 119 CONTRIBUTIONS TO COLLECTED EDITIONS/PROCEEDINGS 121 12 ACKNOWLEDGEMENTS 123 13 REFERENCES 125The search for autonomously moving, highly functional and controllable microdevices is a purpose of current micro/nanobiotechnology research, especially in the area of biomedical applications, for which reason, biocompatible solutions are in demand. In this thesis, a novel type of hybrid microswimmer is fabricated by the combination of rolled up thin nanomembranes with bovine spermatozoa. The microbiorobot presented here uses the powerful motion of the sperm flagella as a propulsion source for the magnetic microtube. This work demonstrates how the microswimmer performs its motion and how several factors such as temperature, radius of the microtube, penetration of the cell inside the microtube and length of the tube have influence on its performance. Directional control mechanisms are offered by external magnetic fields and are presented to be useful for the on-chip separation of the microbiorobots from a mixture of cells and microtubes. Two surface modification methods are presented as means to improve the coupling efficiency between the microtubes and the sperm cells. By these surface functionalizations, the extracellular matrix protein fibronectin is attached on the inner microtube walls and serves as binding agent for the spermatozoa. Finally, a remote release mechanism for the sperm cells is demonstrated by the incorporation of thermoresponsive material into the microtubes, which makes them fold and unfold upon small temperature changes. This work discusses the potential of such microswimmers for the application in assisted reproduction techniques and gives an outlook on future perspectives.:TABLE OF CONTENTS SELBSTSTÄNDIGKEITSERKLÄRUNG 0 ABSTRACT 1 TABLE OF CONTENTS 3 1 MOTIVATION AND GOALS 5 1.1 MINIATURIZATION: “THERE IS PLENTY OF ROOM AT THE BOTTOM…” 5 1.2 SPERMBOTS: POTENTIAL IMPACT 7 2 BACKGROUND AND STATE-OF-THE-ART 11 2.1 MICROBIOROBOTICS 11 2.2 SPERM MORPHOLOGY AND THEIR JOURNEY TO THE EGG 15 2.3 INFERTILITY AND ASSISTED REPRODUCTION TECHNIQUES 19 2.4 SINGLE CELL RELEASE 22 2.5 STIMULI-RESPONSIVE MATERIALS 25 3 MATERIAL AND METHODS 29 3.1 ROLLED UP TECHNOLOGY 29 3.2 TREATMENT OF BOVINE SPERMATOZOA 32 3.2.1 Preparation of Spermbots 32 3.2.2 Speed Measurements 33 3.2.3 Separation On Chip 33 3.3 SURFACE MODIFICATION OF MICROTUBES 34 3.3.1 Surface Chemistry 35 3.3.2 Microcontact printing 39 3.4 POLYMER TUBE FABRICATION 44 3.4.1 Synthesis of photosensitive monomer 4-Acryloylbenzophenone 44 3.4.2 Synthesis of poly (N-isopropylacrylamide-co-Acryloylbenzophenone) 46 3.4.3 Photolithography of polymeric films 48 3.5 VIABILITY TESTS 51 4 RESULTS AND DISCUSSION 53 4.1 CHARACTERIZATION OF SPERMBOTS 55 4.2 TEMPERATURE INFLUENCE 60 4.3 MAGNETIC CONTROL 62 4.4 SEPARATION ON CHIP 68 4.5 EFFECT OF DECREASED MICROTUBE LENGTH 72 4.6 COUPLING EFFICIENCY 74 4.7 THERMORESPONSIVE POLYMERIC MICROTUBES FOR CELL RELEASE 80 4.8 SPERM VIABILITY TESTS 94 5 SUMMARY AND CONCLUSIONS 97 6 OUTLOOK 101 7 LIST OF FIGURES 107 8 LIST OF TABLES 113 9 ABBREVIATIONS 115 10 CURRICULUM VITAE 117 11 LIST OF PUBLICATIONS 119 JOURNAL ARTICLES 119 CONTRIBUTIONS TO COLLECTED EDITIONS/PROCEEDINGS 121 12 ACKNOWLEDGEMENTS 123 13 REFERENCES 12

    Sperm Micromotors for Cargo Delivery through Flowing Blood

    Get PDF
    Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo delivery in complex biological environments. However, their feasibility in the circulatory system has been limited due to the low thrust force exhibited by many of the reported synthetic micromotors, which is not sufficient to overcome the high flow and complex composition of blood. Here we present a hybrid sperm micromotor that can actively swim against flowing blood (continuous and pulsatile) and perform the function of heparin cargo delivery. In this biohybrid system, the sperm flagellum provides a high propulsion force while the synthetic microstructure serves for magnetic guidance and cargo transport. Moreover, single sperm micromotors can assemble into a train-like carrier after magnetization, allowing the transport of multiple sperm or medical cargoes to the area of interest, serving as potential anticoagulant agents to treat blood clots or other diseases in the circulatory system

    Micromotors for Environmental Applications

    Get PDF
    [eng] Scarce supply of clean water and rising water pollution are key global challenges for water sustainability. Much of the wastewater generated by human agricultural and industrial activity is left untreated. Nanotechnological materials and systems have emerged as new tools for improving the efficiency of water treatment. Among those, self-propelled micromotors have shown several advantageous characteristics. Micromotors are autonomously propelled systems which either use chemical energy present in their environment or are propelled via external force fields. Diverse designs, materials composition and mechanisms of propulsion are reported for micromotors found in the literature. Among them, bubble-propelled micromotors, which move due to the generation and release of gas bubbles from their surface, are the main type of motors used for water remediation applications. In addition to the motion in fluids, the bubbles generated by the motors, also contribute with additional mixing of the fluid and enhance the mass transfer between active material and pollutant at the microscale. Additionally, the structure of micromotors can be modified to target a wide variety of pollutants, almost on demand. The micromotors that we synthesized during the research work for this thesis can remove organic and heavy metal pollutants, as well as exhibit bactericidal activity. We studied Iron/Platinum (Fe/Pt) micromotors for their reusability, effect of sizes, swimming behaviors and catalytic properties. These micromotors were fabricated by spontaneous roll-up of iron and platinum nanomembranes, deposited on the pre-fabricated patterns of a photoresist substrate. The iron layer present as the outer surface of these micromotors can degrade organic pollutants via Fenton-like reaction and the inner platinum layer acts as the engine decomposing hydrogen peroxide to oxygen for bubble propulsion. We observed that Fe/Pt micromotors can swim continuously for hours, and can be stored for weeks before reuse, without sacrificing much of their activity. The results suggested that Fe/Pt micromotors act as a heterogeneous catalyst due to in situ generated iron oxide species on the surface, without leaching high concentration of iron in the media. We developed graphene oxide-based micromotors (GOx-micromotors) for heavy metal removal, consisting of nanosized multilayers of graphene oxide, nickel, and platinum. These micromotors can capture, transfer, and remove heavy metals (i.e. lead) from contaminated water. GOx-micromotors are synthesized by electrodepositions of electro-reducible graphene oxide, nickel and platinum layers in the polycarbonate porous templates. The outer layer of graphene oxide captures lead on their surface, and the inner layer of platinum provides self-propulsion in hydrogen peroxide, while the middle layer of nickel enables external magnetic control of the micromotors. We observed that the mobile GOx-micromotors can remove lead 10 times more efficiently than non-motile GOx-micromotors, cleaning water from 1000 ppb down to below 50 ppb. We have demonstrated control of their motion and directionality in a proof of concept microfluidic system. Silver nanoparticles (AgNPs) decorated Magnesium Janus micromotors were designed for disinfection and remove of Escherichia coli (E. coli) bacteria from contaminated water. Magnesium present in the micromotors functions as both, the template for the spherical shape and propulsion source by producing hydrogen bubbles while in contact with water. The inner layer of iron provides functionality for the magnetic remote guidance, and an outer AgNP coated gold layer facilitates adhesion of bacteria and gives bactericidal properties to the micromotors. We observed that the AgNPs-coated Au cap of the micromotors shows dual capabilities, capturing bacteria and killing them. In our efforts to develop multifunctional micromotors and scalable synthesis methods, we developed two types of micromotors. (i) Mesoporous silica-based micromotors with manganese dioxide (MnO2) layer on the inner surface and coated with γ-Fe2O3 nanoparticles (FeSiMnOx micromotors). These micromotors can remove both organic and heavy metal pollutants, and they are synthesized using only template-assisted chemical methods. (ii) Cobalt ferrite micromotors (CFO micromotors) synthesized by template-free chemical synthesis approach. They are made up of aggregated cobalt ferrite nanoparticles, which act as the catalyst for propulsion and for Fenton-like reactions. We qualitatively measured the generation of hydroxyl radicals by CFO micromotors and studied the effect of surfactants on the degradation efficiency of CFO micromotors. We hope that such approach of synthesizing micromotors via relatively facile methods will push the use of micromotors towards commercially practical solutions for water treatment. Overall, our results show that the multifunctional self-propelled micromotors have potential to become an effective tool for water remediation in the near future.[spa] El escaso suministro de agua limpia y el aumento de la contaminación del agua son desafíos globales clave para la sostenibilidad del agua, sobre todo teniendo en cuenta que gran parte del agua residual generada por la actividad agrícola e industrial humana no se trata. Los materiales y sistemas nanotecnológicos han surgido como nuevas herramientas para mejorar la eficiencia del tratamiento de aguas. Entre ellos, los micromotores autopropulsados han mostrado varias características ventajosas. Los micromotores son sistemas de propulsión autónoma que utilizan energía química presente en su entorno o pueden también ser propulsadas a través de campos de fuerzas aplicadas externamente. Varios diseños, composición de materiales y mecanismos de propulsión se han sido reportados en el campo de los micromotores. Entre ellos, principalmente los micromotores propulsados por burbujas, los cuales se mueven debido a la generación y liberación de burbujas de gas de su superficie, se utilizan como una herramienta para aplicaciones de remediación de aguas. Esto se debe a la eficacia añadida de la transferencia de masa a la microescala, que se origina a partir de su movimiento y el movimiento de las burbujas liberadas. Además, la estructura de los micromotores se puede modificar para dirigirse a una amplia variedad de contaminantes, según los requerimientos. Los micromotores que sintetizamos durante el trabajo de investigación para esta tesis pueden eliminar contaminantes orgánicos y metales pesados, así como exhibir actividad anti bactericida. Estudiamos micromotores de hierro / platino (Fe / Pt) por su reutilización, efecto de tamaños, su comportamiento durante su movimiento y propiedades catalíticas. Estos micromotores se fabricaron mediante enrollamiento espontáneo de nanomembranas de hierro y platino, depositadas en los patrones prefabricados definidos en una capa sacrificial fotorresistente. La capa de hierro presente como superficie externa de estos micromotores puede degradar los contaminantes orgánicos a través de la reacción tipo Fenton y la capa interna de platino actúa como el motor, siendo el catalizador que descompone el peróxido de hidrógeno en oxígeno para generar una propulsión por burbujas. Observamos que los micromotores Fe / Pt pueden nadar continuamente durante horas y pueden almacenarse durante semanas antes de volver a ser usados, sin que esto repercuta de manera significativa en su actividad. Los resultados de nuestros experimentos sobre el análisis de superficie de micromotores, estudio de nanoindentación y liberación de hierro sugirieron que los micromotores Fe / Pt actúan como un catalizador heterogéneo debido a las especies de óxido de hierro generadas in situ en la superficie, sin lixiviación de alta concentración de hierro en los medios. Desarrollamos micromotores basados en óxido de grafeno (micromotores GOx) para la eliminación de metales pesados que consisten en multicapas nanométricas de óxido de grafeno, níquel y platino. Estos micromotores pueden capturar, transferir y eliminar metales pesados (es decir, plomo) del agua contaminada. Los micromotores GOx se sintetizan mediante electrodeposiciones de capas de óxido de grafeno, níquel y platino, los cuales son electroreducidos en la parte interior de membranas de policarbonato porosas. La capa externa de óxido de grafeno captura el plomo en su superficie, y la capa interna de platino proporciona autopropulsión en presencia de peróxido de hidrógeno, mientras que la capa intermedia de níquel permite el control magnético externo de los micromotores. Observamos que los micromotores móviles GOx pueden eliminar el plomo hasta 10 veces más que los micromotores GOx no móviles (Figura 1B), limpiando el plomo en agua de 1000 ppb a menos de 50 ppb en menos de 60 min. Hemos demostrado el control de su movimiento y direccionalidad en un sistema microfluídico como prueba de concepto. Diseñamos también micromotores tipo Janus decorados con nanopartículas de plata (AgNP) para la desinfección y eliminación de la bacteria Escherichia coli (E. coli) en agua contaminada. Los micromotores Janus se sintetizaron recubriendo un lado de una micro-partícula de magnesio con capas de hierro y oro, las cuales posteriormente se funcionalizaron con AgNP. El magnesio presente en los micromotores funciona no sólo como estructura principal para conseguir una forma esférica, sino también como fuente de propulsión mediante la producción de burbujas de hidrógeno al entrar en contacto con el agua. La capa interna de hierro proporciona la funcionalidad requerida para el posterior control magnético externo, mientras que la capa de oro externa decorada con AgNPs promueve la adhesión de bacterias y dota de propiedades bactericidas a los micromotores. En nuestro esfuerzo por desarrollar micromotores multifuncionales y métodos de síntesis escalables, desarrollamos dos tipos de micromotores. (i) Micromotores mesoporosos basados en sílice con una capa de dióxido de manganeso (MnO2) en la superficie interna y recubiertos con nanopartículas γ-Fe2O3 (micromotores FeSiMnOx). Estos micromotores pueden eliminar contaminantes orgánicos y metales pesados, y se sintetizan utilizando solo métodos químicos asistidos por un molde (por ejemplo, una membrana porosa). (ii) Los micromotores de ferrita de cobalto (micromotores CFO) fueron sintetizados sin necesidad de utilizar ningún molde. Están formados por nanopartículas de ferrita de cobalto agregadas, que actúan como catalizadores para la propulsión y para reacciones tipo Fenton. Medimos cualitativamente la generación de radicales hidroxilos por micromotores CFO y estudiamos el efecto de los tensioactivos sobre la eficiencia de degradación de los micromotores CFO. Esperamos que la síntesis de micromotores a través de métodos relativamente fáciles empuje la implementación de micromotores en soluciones comercialmente prácticas para el tratamiento del agua. En general, nuestros resultados muestran que los micromotores autopropulsados multifuncionales tienen el potencial de convertirse en una herramienta efectiva para la limpieza de aguas en el futuro

    Custom-Designed Biohybrid Micromotor for Potential Disease Treatment

    Get PDF
    Micromotors are recognized as promising candidates for untethered micromanipulation and targeted cargo transport. Their future application is, however, hindered by the low efficiency of drug encapsulation and their poor adaptability in physiological conditions. To address these challenges, one potential solution is to incorporate micromotors with biological materials as the combination of functional biological entities and smart artificial parts represents a manipulable and biologically friendly approach. This dissertation focuses on the development of custom-designed micromotors combined with sperm and their potential applications on targeted diseases treatment. By means of 2D and 3D lithography methods, microstructures with complex configurations can be fabricated for specific demands. Bovine and human sperm are both for the first time explored as drug carriers thanks to their high encapsulation efficiency of hydrophilic drugs, their powerful self-propulsion and their improved drug-uptake relying on the somatic-cell fusion ability. The hybrid micromotors containing drug loaded sperm and constructed artificial enhancements can be self-propelled by the sperm flagella and remotely guided and released to the target at high precision by employing weak external magnetic fields. As a result, micromotors based on both bovine and human sperm show significant anticancer effect. The application here can be further broadened to other biological environments, in particular to the blood stream, showing the potential on the treatment of blood diseases like blood clotting. Finally, to enhance the treatment efficiency, in particular to control sperm number and drug dose, three strategies are demonstrated to transport swarms of sperm. This research paves the way for the precision medicine based on engineered sperm-based micromotors

    Active particles in complex and crowded environments

    Get PDF
    Differently from passive Brownian particles, active particles, also known as self-propelled Brownian particles or microswimmers and nanoswimmers, are capable of taking up energy from their environment and converting it into directed motion. Because of this constant flow of energy, their behavior can be explained and understood only within the framework of nonequilibrium physics. In the biological realm, many cells perform directed motion, for example, as a way to browse for nutrients or to avoid toxins. Inspired by these motile microorganisms, researchers have been developing artificial particles that feature similar swimming behaviors based on different mechanisms. These man-made micromachines and nanomachines hold a great potential as autonomous agents for health care, sustainability, and security applications. With a focus on the basic physical features of the interactions of self-propelled Brownian particles with a crowded and complex environment, this comprehensive review will provide a guided tour through its basic principles, the development of artificial self-propelling microparticles and nanoparticles, and their application to the study of nonequilibrium phenomena, as well as the open challenges that the field is currently facing. © 2016 American Physical Society
    corecore