20,056 research outputs found

    A layered fuzzy logic controller for nonholonomic car-like robot

    Get PDF
    A system for real time navigation of a nonholonomic car-like robot in a dynamic environment consists of two layers is described: a Sugeno-type fuzzy motion planner; and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including right and left views to identify the next step to the goal. A Sugeno-type fuzzy motion planner of four inputs one output is introduced to give a clear direction to the robot controller. The second stage is a modified proportional navigation based fuzzy controller based on the proportional navigation guidance law and able to optimize the robot's behavior in real time, i.e. to avoid stationary and moving obstacles in its local environment obeying kinematics constraints. The system has an intelligent combination of two behaviors to cope with obstacle avoidance as well as approaching a target using a proportional navigation path. The system was simulated and tested on different environments with various obstacle distributions. The simulation reveals that the system gives good results for various simple environments

    A new fuzzy set merging technique using inclusion-based fuzzy clustering

    Get PDF
    This paper proposes a new method of merging parameterized fuzzy sets based on clustering in the parameters space, taking into account the degree of inclusion of each fuzzy set in the cluster prototypes. The merger method is applied to fuzzy rule base simplification by automatically replacing the fuzzy sets corresponding to a given cluster with that pertaining to cluster prototype. The feasibility and the performance of the proposed method are studied using an application in mobile robot navigation. The results indicate that the proposed merging and rule base simplification approach leads to good navigation performance in the application considered and to fuzzy models that are interpretable by experts. In this paper, we concentrate mainly on fuzzy systems with Gaussian membership functions, but the general approach can also be applied to other parameterized fuzzy sets

    Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Full text link
    Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments

    Intelligent active force control of a three-link manipulator using fuzzy logic

    Get PDF
    The paper presents a novel approach to estimate the inertia matrix of a robot arm using a fuzzy logic (FL) mechanism in order to trigger the active force control (AFC) strategy. A comprehensive study is performed on a rigid three-link manipulator subjected to a number of external disturbances. The robustness and effectiveness of the proposed control scheme are investigated considering the trajectory track performance of the robotic arm taking into account the application of external disturbances and that the arm is commanded to describe a reference trajectory given a number of initial and operating conditions. The results show that the FL mechanism used in the study successfully computes appropriate estimated inertia matrix value to execute the control action. The proposed scheme exhibits a high degree of robustness and accuracy as the track error is bounded within an acceptable range of value even under the influence of the introduced disturbances

    Adaptive Non-singleton Type-2 Fuzzy Logic Systems: A Way Forward for Handling Numerical Uncertainties in Real World Applications

    Get PDF
    Real world environments are characterized by high levels of linguistic and numerical uncertainties. A Fuzzy Logic System (FLS) is recognized as an adequate methodology to handle the uncertainties and imprecision available in real world environments and applications. Since the invention of fuzzy logic, it has been applied with great success to numerous real world applications such as washing machines, food processors, battery chargers, electrical vehicles, and several other domestic and industrial appliances. The first generation of FLSs were type-1 FLSs in which type-1 fuzzy sets were employed. Later, it was found that using type-2 FLSs can enable the handling of higher levels of uncertainties. Recent works have shown that interval type-2 FLSs can outperform type-1 FLSs in the applications which encompass high uncertainty levels. However, the majority of interval type-2 FLSs handle the linguistic and input numerical uncertainties using singleton interval type-2 FLSs that mix the numerical and linguistic uncertainties to be handled only by the linguistic labels type-2 fuzzy sets. This ignores the fact that if input numerical uncertainties were present, they should affect the incoming inputs to the FLS. Even in the papers that employed non-singleton type-2 FLSs, the input signals were assumed to have a predefined shape (mostly Gaussian or triangular) which might not reflect the real uncertainty distribution which can vary with the associated measurement. In this paper, we will present a new approach which is based on an adaptive non-singleton interval type-2 FLS where the numerical uncertainties will be modeled and handled by non-singleton type-2 fuzzy inputs and the linguistic uncertainties will be handled by interval type-2 fuzzy sets to represent the antecedents’ linguistic labels. The non-singleton type-2 fuzzy inputs are dynamic and they are automatically generated from data and they do not assume a specific shape about the distribution associated with the given sensor. We will present several real world experiments using a real world robot which will show how the proposed type-2 non-singleton type-2 FLS will produce a superior performance to its singleton type-1 and type-2 counterparts when encountering high levels of uncertainties.</jats:p

    Regression between headmaster leadership, task load and job satisfaction of special education integration program teacher

    Get PDF
    Managing school is a daunting task for a headmaster. This responsibility is exacerbated when it involves the Special Education Integration Program (SEIP). This situation requires appropriate and effective leadership in addressing some of the issues that are currently taking place at SEIP such as task load and job satisfaction. This study aimed to identify the influence of headmaster leadership on task load and teacher job satisfaction at SEIP. This quantitative study was conducted by distributing 400 sets of randomized questionnaires to SEIP teachers across Malaysia through google form. The data obtained were then analyzed using Structural Equation Modeling (SEM) and AMOS software. The results show that there is a significant positive effect on the leadership of the headmaster and the task load of the teacher. Likewise, the construct of task load and teacher job satisfaction has a significant positive effect. However, for the construct of headmaster leadership and teacher job satisfaction, there was no significant positive relationship. This finding is very important as a reference to the school administration re-evaluating their leadership so as not to burden SEIP teachers and to give them job satisfaction. In addition, the findings of this study can also serve as a guide for SEIP teachers to increase awareness of the importance of managing their tasks. This study also focused on education leadership in general and more specifically on special education leadership
    corecore