311 research outputs found

    Mechanical Description of a Hyper-Redundant Robot Joint Mechanism Used for a Design of a Biomimetic Robotic Fish

    Get PDF
    A biologically inspired robot in the form of fish (mackerel) model using rubber (as the biomimetic material) for its hyper-redundant joint is presented in this paper. Computerized simulation of the most critical part of the model (the peduncle) shows that the rubber joints will be able to take up the stress that will be created. Furthermore, the frequency-induced softening of the rubber used was found to be critical if the joints are going to oscillate at frequency above 25 Hz. The robotic fish was able to attain a speed of 0.985 m/s while the tail beats at a maximum of 1.7 Hz when tested inside water. Furthermore, a minimum turning radius of 0.8 m (approximately 2 times the fish body length) was achieved

    The Role of Double-Tentacled Cooperative Kinematics on the Hydrodynamics of a Self-propelled Swimmer

    Get PDF
    In this study, we proposed an underwater robotic swimmer integrating dual-actuated composite tentacles. We employed overlapping grid technology to manipulate virtual swimmers and performed simulations of incompressible viscous flow. To facilitate the distinction between three driving modes (the reverse, homologous, and interlace modes), the rear flexible module of the swimmer was divided into three components: thigh links, calf links, and caudal fins. The cooperative motion mechanism behind the double-tentacled module exhibited special hydrodynamic properties. Under the same kinematic parameters, the reverse mode exhibited the best energy-saving and propulsion effect, whereas the homologous mode was affected by lateral energy loss, thus resulting in the worst propulsion effect. However, the joint system exhibited anti-interference and spanwise flexibility. The interlace mode produced a certain error in the lateral displacement, and the propulsion efficiency was between the former two modes. Compared with traditional fish-like robots, the diverse actuation morphologies of the swimmer reported in this study exhibit extremely powerful self-propelled functionality, and its key features, including the geometry of an aquatic squid and the kinematics of the stretched body-caudal fin pattern, offer insights into the analysis of self-propelled hydrodynamics
    • …
    corecore