3,426 research outputs found

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    Artificial intelligence in histopathology image analysis for cancer precision medicine

    Get PDF
    In recent years, there have been rapid advancements in the field of computational pathology. This has been enabled through the adoption of digital pathology workflows that generate digital images of histopathological slides, the publication of large data sets of these images and improvements in computing infrastructure. Objectives in computational pathology can be subdivided into two categories, first the automation of routine workflows that would otherwise be performed by pathologists and second the addition of novel capabilities. This thesis focuses on the development, application, and evaluation of methods in this second category, specifically the prediction of gene expression from pathology images and the registration of pathology images among each other. In Study I, we developed a computationally efficient cluster-based technique to perform transcriptome-wide predictions of gene expression in prostate cancer from H&E-stained whole-slide-images (WSIs). The suggested method outperforms several baseline methods and is non-inferior to single-gene CNN predictions, while reducing the computational cost with a factor of approximately 300. We included 15,586 transcripts that encode proteins in the analysis and predicted their expression with different modelling approaches from the WSIs. In a cross-validation, 6,618 of these predictions were significantly associated with the RNA-seq expression estimates with FDR-adjusted p-values <0.001. Upon validation of these 6,618 expression predictions in a held-out test set, the association could be confirmed for 5,419 (81.9%). Furthermore, we demonstrated that it is feasible to predict the prognostic cell-cycle progression score with a Spearman correlation to the RNA-seq score of 0.527 [0.357, 0.665]. The objective of Study II is the investigation of attention layers in the context of multiple-instance-learning for regression tasks, exemplified by a simulation study and gene expression prediction. We find that for gene expression prediction, the compared methods are not distinguishable regarding their performance, which indicates that attention mechanisms may not be superior to weakly supervised learning in this context. Study III describes the results of the ACROBAT 2022 WSI registration challenge, which we organised in conjunction with the MICCAI 2022 conference. Participating teams were ranked on the median 90th percentile of distances between registered and annotated target landmarks. Median 90th percentiles for eight teams that were eligible for ranking in the test set consisting of 303 WSI pairs ranged from 60.1 µm to 15,938.0 µm. The best performing method therefore has a score slightly below the median 90th percentile of distances between first and second annotator of 67.0 µm. Study IV describes the data set that we published to facilitate the ACROBAT challenge. The data set is available publicly through the Swedish National Data Service SND and consists of 4,212 WSIs from 1,153 breast cancer patients. Study V is an example of the application of WSI registration for computational pathology. In this study, we investigate the possibility to register invasive cancer annotations from H&E to KI67 WSIs and then subsequently train cancer detection models. To this end, we compare the performance of models optimised with registered annotations to the performance of models that were optimised with annotations generated for the KI67 WSIs. The data set consists of 272 female breast cancer cases, including an internal test set of 54 cases. We find that in this test set, the performance of both models is not distinguishable regarding performance, while there are small differences in model calibration

    Application of digital pathology-based advanced analytics of tumour microenvironment organisation to predict prognosis and therapeutic response.

    Get PDF
    In recent years, the application of advanced analytics, especially artificial intelligence (AI), to digital H&E images, and other histological image types, has begun to radically change how histological images are used in the clinic. Alongside the recognition that the tumour microenvironment (TME) has a profound impact on tumour phenotype, the technical development of highly multiplexed immunofluorescence platforms has enhanced the biological complexity that can be captured in the TME with high precision. AI has an increasingly powerful role in the recognition and quantitation of image features and the association of such features with clinically important outcomes, as occurs in distinct stages in conventional machine learning. Deep-learning algorithms are able to elucidate TME patterns inherent in the input data with minimum levels of human intelligence and, hence, have the potential to achieve clinically relevant predictions and discovery of important TME features. Furthermore, the diverse repertoire of deep-learning algorithms able to interrogate TME patterns extends beyond convolutional neural networks to include attention-based models, graph neural networks, and multimodal models. To date, AI models have largely been evaluated retrospectively, outside the well-established rigour of prospective clinical trials, in part because traditional clinical trial methodology may not always be suitable for the assessment of AI technology. However, to enable digital pathology-based advanced analytics to meaningfully impact clinical care, specific measures of 'added benefit' to the current standard of care and validation in a prospective setting are important. This will need to be accompanied by adequate measures of explainability and interpretability. Despite such challenges, the combination of expanding datasets, increased computational power, and the possibility of integration of pre-clinical experimental insights into model development means there is exciting potential for the future progress of these AI applications. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland
    corecore