137 research outputs found

    Spatial-learning and representation in animats

    Get PDF

    Opinions and Outlooks on Morphological Computation

    Get PDF
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon system – and plants, but it has also been observed at the cellular and even at the molecular level – as seen, for example, in spontaneous self-assembly. The concept of morphological computation has served as an inspirational resource to build bio-inspired robots, design novel approaches for support systems in health care, implement computation with natural systems, but also in art and architecture. As a consequence, the field is highly interdisciplinary, which is also nicely reflected in the wide range of authors that are featured in this e-book. We have contributions from robotics, mechanical engineering, health, architecture, biology, philosophy, and others

    Opinions and Outlooks on Morphological Computation

    Get PDF

    Compromised Values: Charlotte Posenenske, 1966–Present

    Full text link
    Fabricated in unlimited series and sold at cost, the sculptures produced by Charlotte Posenenske between 1966 and 1967—modular wall reliefs, interactive cubic structures, and tubular geometric units whose installation requires collective decision making—were meant to confront both the artwork’s commodity status and the limitation of its consumption to a privileged elite. Nevertheless, Posenenske’s work has been effectively recuperated by the art system: first, in the 1980s, through a series of exhibitions and publications organized by her estate; and second, with her inclusion in Documenta 12 in 2007, which reintroduced her work to the market. Since the artist’s death in 1985, her work’s circulation through the art system has increasingly revealed the normally obscured role that economic value plays in curatorial and conservation practices. Inspired by the artist’s own abandonment of art and turn to sociology after 1968, I examine her oeuvre via an expanded concept of value, using this term to refer to the often conflicting aesthetic, cultural, historical, and economic significance that is attached to artworks as they move through cultural and institutional contexts. Borrowing a term from cultural economist David Stark, I propose that Posenenske’s sculptures create value heterarchies—systems in which multiple valuative criteria are in conflict, creating friction between modes of valuation and prompting the recognition of not-yet-formulated value categories. Given Posenenske’s resistance to the commodification of her work during her life, her anticipation of its ongoing reproduction and circulation, and museums’ subsequent assertion of its economic value after her death, this dissertation argues that her art is central to assessing the shifts in value that accompany the collection and preservation of institution-critical sculpture, as well as all objects that circulate within the art system

    Complex event types for agent-based simulation

    Get PDF
    This thesis presents a novel formal modelling language, complex event types (CETs), to describe behaviours in agent-based simulations. CETs are able to describe behaviours at any computationally represented level of abstraction. Behaviours can be specified both in terms of the state transition rules of the agent-based model that generate them and in terms of the state transition structures themselves. Based on CETs, novel computational statistical methods are introduced which allow statistical dependencies between behaviours at different levels to be established. Different dependencies formalise different probabilistic causal relations and Complex Systems constructs such as ‘emergence’ and ‘autopoiesis’. Explicit links are also made between the different types of CET inter-dependency and the theoretical assumptions they represent. With the novel computational statistical methods, three categories of model can be validated and discovered: (i) inter-level models, which define probabilistic dependencies between behaviours at different levels; (ii) multi-level models, which define the set of simulations for which an inter-level model holds; (iii) inferred predictive models, which define latent relationships between behaviours at different levels. The CET modelling language and computational statistical methods are then applied to a novel agent-based model of Colonic Cancer to demonstrate their applicability to Complex Systems sciences such as Systems Biology. This proof of principle model provides a framework for further development of a detailed integrative model of the system, which can progressively incorporate biological data from different levels and scales as these become available

    Design in the Age of Information: A Report to the National Science Foundation (NSF)

    Get PDF
    The Information Age is upon us - it has become a global force in our everyday lives. But the promise of significant benefits from this revolution, which has been driven largely by technologists, will not be realized without more careful planning and design of information systems that can be integral to the simultaneously emerging user-cultures. In cultural terms, information systems must be effective, reliable, affordable, intuitively meaningful, and available anytime and everywhere. In this phase of the information revolution, design will be essential

    Authentic alignment : toward an Interpretative Phenomenological Analysis (IPA) informed model of the learning environment in health professions education

    Get PDF
    It is well established that the goals of education can only be achieved through the constructive alignment of instruction, learning and assessment. There is a gap in research interpreting the lived experiences of stakeholders within the UK learning environment toward understanding the real impact – authenticity – of curricular alignment. This investigation uses a critical realist framework to explore the emergent quality of authenticity as a function of alignment.This project deals broadly with alignment of anatomy pedagogy within UK undergraduate medical education. The thread of alignment is woven through four aims: 1) to understand the alignment of anatomy within the medical curriculum via the relationships of its stakeholders; 2) to explore the apparent complexity of the learning environment (LE); 3) to generate a critical evaluation of the methodology, Interpretative Phenomenological Analysis as an approach appropriate for realist research in the complex fields of medical and health professions education; 4) to propose a functional, authentic model of the learning environment.Findings indicate that the complexity and uncertainty inherent in the LE can be reflected in spatiotemporal models. Findings meet the thesis aims, suggesting: 1) the alignment of anatomy within the medical curriculum is complex and forms a multiplicity of perspectives; 2) this complexity is ripe for phenomenological exploration; 3) IPA is particularly suitable for realist research exploring complexity in HPE; 4) Authentic Alignment theory offers a spatiotemporal model of the complex HPE learning environment:the T-icosa

    Stepping Beyond the Newtonian Paradigm in Biology. Towards an Integrable Model of Life: Accelerating Discovery in the Biological Foundations of Science

    Get PDF
    The INBIOSA project brings together a group of experts across many disciplines who believe that science requires a revolutionary transformative step in order to address many of the vexing challenges presented by the world. It is INBIOSA’s purpose to enable the focused collaboration of an interdisciplinary community of original thinkers. This paper sets out the case for support for this effort. The focus of the transformative research program proposal is biology-centric. We admit that biology to date has been more fact-oriented and less theoretical than physics. However, the key leverageable idea is that careful extension of the science of living systems can be more effectively applied to some of our most vexing modern problems than the prevailing scheme, derived from abstractions in physics. While these have some universal application and demonstrate computational advantages, they are not theoretically mandated for the living. A new set of mathematical abstractions derived from biology can now be similarly extended. This is made possible by leveraging new formal tools to understand abstraction and enable computability. [The latter has a much expanded meaning in our context from the one known and used in computer science and biology today, that is "by rote algorithmic means", since it is not known if a living system is computable in this sense (Mossio et al., 2009).] Two major challenges constitute the effort. The first challenge is to design an original general system of abstractions within the biological domain. The initial issue is descriptive leading to the explanatory. There has not yet been a serious formal examination of the abstractions of the biological domain. What is used today is an amalgam; much is inherited from physics (via the bridging abstractions of chemistry) and there are many new abstractions from advances in mathematics (incentivized by the need for more capable computational analyses). Interspersed are abstractions, concepts and underlying assumptions “native” to biology and distinct from the mechanical language of physics and computation as we know them. A pressing agenda should be to single out the most concrete and at the same time the most fundamental process-units in biology and to recruit them into the descriptive domain. Therefore, the first challenge is to build a coherent formal system of abstractions and operations that is truly native to living systems. Nothing will be thrown away, but many common methods will be philosophically recast, just as in physics relativity subsumed and reinterpreted Newtonian mechanics. This step is required because we need a comprehensible, formal system to apply in many domains. Emphasis should be placed on the distinction between multi-perspective analysis and synthesis and on what could be the basic terms or tools needed. The second challenge is relatively simple: the actual application of this set of biology-centric ways and means to cross-disciplinary problems. In its early stages, this will seem to be a “new science”. This White Paper sets out the case of continuing support of Information and Communication Technology (ICT) for transformative research in biology and information processing centered on paradigm changes in the epistemological, ontological, mathematical and computational bases of the science of living systems. Today, curiously, living systems cannot be said to be anything more than dissipative structures organized internally by genetic information. There is not anything substantially different from abiotic systems other than the empirical nature of their robustness. We believe that there are other new and unique properties and patterns comprehensible at this bio-logical level. The report lays out a fundamental set of approaches to articulate these properties and patterns, and is composed as follows. Sections 1 through 4 (preamble, introduction, motivation and major biomathematical problems) are incipient. Section 5 describes the issues affecting Integral Biomathics and Section 6 -- the aspects of the Grand Challenge we face with this project. Section 7 contemplates the effort to formalize a General Theory of Living Systems (GTLS) from what we have today. The goal is to have a formal system, equivalent to that which exists in the physics community. Here we define how to perceive the role of time in biology. Section 8 describes the initial efforts to apply this general theory of living systems in many domains, with special emphasis on crossdisciplinary problems and multiple domains spanning both “hard” and “soft” sciences. The expected result is a coherent collection of integrated mathematical techniques. Section 9 discusses the first two test cases, project proposals, of our approach. They are designed to demonstrate the ability of our approach to address “wicked problems” which span across physics, chemistry, biology, societies and societal dynamics. The solutions require integrated measurable results at multiple levels known as “grand challenges” to existing methods. Finally, Section 10 adheres to an appeal for action, advocating the necessity for further long-term support of the INBIOSA program. The report is concluded with preliminary non-exclusive list of challenging research themes to address, as well as required administrative actions. The efforts described in the ten sections of this White Paper will proceed concurrently. Collectively, they describe a program that can be managed and measured as it progresses

    Noise and morphogenesis: Uncertainty, randomness and control

    Get PDF
    This thesis presents a processual ontology of noise by virtue of which morphogenesis (in its most general understanding as the processes by which order/form is created) must be instantiated. Noise is here outlined as the far from equilibrium environment out of which metastable temporary ‘solutions’ can emerge as the system transitions through the pre-individual state space. While frequently addressed by humanities and arts studies on the basis of its supposed disruptive character (often in terms of aesthetics), this thesis aims to thoroughly examine noise’s conceptual potencies. To explore and amplify the epistemic consequences not merely of the ineliminability of noise but of its originative power as well as within the course of the elimination of givenness by epistemology. This philosophical work is informed by many different fields of contemporary science (namely: statistical physics, information theory, probability theory, 4E cognition, synthetic biology, nonlinear dynamics, complexity science and computer science) in order to assess and highlight the problems of the metascientific and ideological foundations of diverse projects of prediction and control of uncertainty. From algorithmic surveillance back to cybernetics and how these rendered noise “informationally heretical”. This conveys an analysis of how contemporary prediction technologies are dramatically transforming our relationship with the future and with uncertainty in a great number of our social structures. It is a philosophico-critical anthropology of data ontology and a critique of reductive pan-info-computationalism. Additionally, two practical examples of noise characterised as an enabling constraint for the functioning of complex adaptive systems are presented. These are at once biophysical and cognitive, : 1) interaction-dominance constituted by ‘pink noise’ and 2) noise as a source of variability that cells may exploit in (synthetic) biology. Finally, noise is posited as an intractable active ontological randomness that limits the scope of determinism and that goes beyond unpredictability in any epistemological sense due to the insuperability of the situation in which epistemology finds itself following the critique of the given
    • 

    corecore