1,441 research outputs found

    Countable locally 2-arc-transitive bipartite graphs

    Get PDF
    We present an order-theoretic approach to the study of countably infinite locally 2-arc-transitive bipartite graphs. Our approach is motivated by techniques developed by Warren and others during the study of cycle-free partial orders. We give several new families of previously unknown countably infinite locally-2-arc-transitive graphs, each family containing continuum many members. These examples are obtained by gluing together copies of incidence graphs of semilinear spaces, satisfying a certain symmetry property, in a tree-like way. In one case we show how the classification problem for that family relates to the problem of determining a certain family of highly arc-transitive digraphs. Numerous illustrative examples are given.Comment: 29 page

    Rings of small rank over a Dedekind domain and their ideals

    Full text link
    In 2001, M. Bhargava stunned the mathematical world by extending Gauss's 200-year-old group law on integral binary quadratic forms, now familiar as the ideal class group of a quadratic ring, to yield group laws on a vast assortment of analogous objects. His method yields parametrizations of rings of degree up to 5 over the integers, as well as aspects of their ideal structure, and can be employed to yield statistical information about such rings and the associated number fields. In this paper, we extend a selection of Bhargava's most striking parametrizations to cases where the base ring is not Z but an arbitrary Dedekind domain R. We find that, once the ideal classes of R are properly included, we readily get bijections parametrizing quadratic, cubic, and quartic rings, as well as an analogue of the 2x2x2 cube law reinterpreting Gauss composition for which Bhargava is famous. We expect that our results will shed light on the analytic distribution of extensions of degree up to 4 of a fixed number field and their ideal structure.Comment: 39 pages, 1 figure. Harvard College senior thesis, edite
    • …
    corecore