1,905 research outputs found

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    Automated processing for map generalization using web services

    Get PDF
    In map generalization various operators are applied to the features of a map in order to maintain and improve the legibility of the map after the scale has been changed. These operators must be applied in the proper sequence and the quality of the results must be continuously evaluated. Cartographic constraints can be used to define the conditions that have to be met in order to make a map legible and compliant to the user needs. The combinatorial optimization approaches shown in this paper use cartographic constraints to control and restrict the selection and application of a variety of different independent generalization operators into an optimal sequence. Different optimization techniques including hill climbing, simulated annealing and genetic deep search are presented and evaluated experimentally by the example of the generalization of buildings in blocks. All algorithms used in this paper have been implemented in a web services framework. This allows the use of distributed and parallel processing in order to speed up the search for optimized generalization operator sequence

    Life settlement pricing with fuzzy parameters

    Full text link
    Existing literature asserts that the growth of life settlement (LS) markets, where they exist, is hampered by limited policyholder participation and suggests that to foster this growth appropriate pricing of LS transactions is crucial. The pricing of LSs relies on quantifying two key variables: the insured's mortality multiplier and the internal rate of return (IRR). However, the available information on these parameters is often scarce and vague. To address this issue, this article proposes a novel framework that models these variables using triangular fuzzy numbers (TFNs). This modelling approach aligns with how mortality multiplier and IRR data are typically provided in insurance markets and has the advantage of offering a natural interpretation for practitioners. When both the mortality multiplier and the IRR are represented as TFNs, the resulting LS price becomes a FN that no longer retains the triangular shape. Therefore, the paper introduces three alternative triangular approximations to simplify computations and enhance interpretation of the price. Additionally, six criteria are proposed to evaluate the effectiveness of each approximation method. These criteria go beyond the typical approach of assessing the approximation quality to the FN itself. They also consider the usability and comprehensibility for financial analysts with no prior knowledge of FNs. In summary, the framework presented in this paper represents a significant advancement in LS pricing. By incorporating TFNs, offering several triangular approximations and proposing goodness criteria of them, it addresses the challenges posed by limited and vague data, while also considering the practical needs of industry practitioners

    Image-based window detection: an overview

    Get PDF
    Automated segmentation of buildings’ façade and detection of its elements is of high relevance in various fields of research as it, e. g., reduces the effort of 3 D reconstructing existing buildings and even entire cities or may be used for navigation and localization tasks. In recent years, several approaches were made concerning this issue. These can be mainly classified by their input data which are either images or 3 D point clouds. This paper provides a survey of image-based approaches. Particularly, this paper focuses on window detection and therefore groups related papers into the three major detection strategies. We juxtapose grammar based methods, pattern recognition and machine learning and contrast them referring to their generality of application. As we found out machine learning approaches seem most promising for window detection on generic façades and thus we will pursue these in future work

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Development of Soil Compressibility Prediction Models

    Get PDF
    The magnitude of the overall settlement depends on several variables such as the Compression Index, Cc, and Recompression Index, Cr, which are determined by a consolidation test; however, the test is time consuming and labor intensive. Correlations have been developed to approximate these compressibility indexes. In this study, a data driven approach has been employed in order to estimate Cc and Cr. Support Vector Machines classification is used to determine the number of distinct models to be developed. The statistical models are built through a forward selection stepwise regression procedure. Ten variables were used, including the moisture content (w), initial void ratio (eo), dry unit weight (γdry), wet unit weight (γwet), automatic hammer SPT blow count (N), overburden stress (σ), fines content (-200), liquid limit (LL), plasticity index (PI), and specific gravity (Gs). The results confirm the need for separate models for three out of four soil types, these being Coarse Grained, Fine Grained, and Organic Peat. The models for each classification have varying degrees of accuracy. The correlations were tested through a series of field tests, settlement analysis, and comparison to known site settlement. The first analysis incorporates developed correlations for Cr, and the second utilizes measured Cc and Cr for each soil layer. The predicted settlements from these two analyses were compared to the measured settlement taken in close proximity. Upon conclusion of the analyses, the results indicate that settlement predictions applying a rule of thumb equating Cc to Cr, accounting for elastic settlement, and using a conventional influence zone of settlement, compares more favorably to measured settlement than that of predictions using measured compressibility index(s). Accuracy of settlement predictions is contingent on a thorough field investigation

    Internationales Kolloquium über Anwendungen der Informatik und Mathematik in Architektur und Bauwesen : 20. bis 22.7. 2015, Bauhaus-Universität Weimar

    Get PDF
    The 20th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering will be held at the Bauhaus University Weimar from 20th till 22nd July 2015. Architects, computer scientists, mathematicians, and engineers from all over the world will meet in Weimar for an interdisciplinary exchange of experiences, to report on their results in research, development and practice and to discuss. The conference covers a broad range of research areas: numerical analysis, function theoretic methods, partial differential equations, continuum mechanics, engineering applications, coupled problems, computer sciences, and related topics. Several plenary lectures in aforementioned areas will take place during the conference. We invite architects, engineers, designers, computer scientists, mathematicians, planners, project managers, and software developers from business, science and research to participate in the conference
    • …
    corecore