486 research outputs found

    GP-GAN: Gender Preserving GAN for Synthesizing Faces from Landmarks

    Full text link
    Facial landmarks constitute the most compressed representation of faces and are known to preserve information such as pose, gender and facial structure present in the faces. Several works exist that attempt to perform high-level face-related analysis tasks based on landmarks. In contrast, in this work, an attempt is made to tackle the inverse problem of synthesizing faces from their respective landmarks. The primary aim of this work is to demonstrate that information preserved by landmarks (gender in particular) can be further accentuated by leveraging generative models to synthesize corresponding faces. Though the problem is particularly challenging due to its ill-posed nature, we believe that successful synthesis will enable several applications such as boosting performance of high-level face related tasks using landmark points and performing dataset augmentation. To this end, a novel face-synthesis method known as Gender Preserving Generative Adversarial Network (GP-GAN) that is guided by adversarial loss, perceptual loss and a gender preserving loss is presented. Further, we propose a novel generator sub-network UDeNet for GP-GAN that leverages advantages of U-Net and DenseNet architectures. Extensive experiments and comparison with recent methods are performed to verify the effectiveness of the proposed method.Comment: 6 pages, 5 figures, this paper is accepted as 2018 24th International Conference on Pattern Recognition (ICPR2018

    GAGAN: Geometry-Aware Generative Adversarial Networks

    Full text link
    Deep generative models learned through adversarial training have become increasingly popular for their ability to generate naturalistic image textures. However, aside from their texture, the visual appearance of objects is significantly influenced by their shape geometry; information which is not taken into account by existing generative models. This paper introduces the Geometry-Aware Generative Adversarial Networks (GAGAN) for incorporating geometric information into the image generation process. Specifically, in GAGAN the generator samples latent variables from the probability space of a statistical shape model. By mapping the output of the generator to a canonical coordinate frame through a differentiable geometric transformation, we enforce the geometry of the objects and add an implicit connection from the prior to the generated object. Experimental results on face generation indicate that the GAGAN can generate realistic images of faces with arbitrary facial attributes such as facial expression, pose, and morphology, that are of better quality than current GAN-based methods. Our method can be used to augment any existing GAN architecture and improve the quality of the images generated
    • …
    corecore