1,618 research outputs found

    The condensation phase transition in random graph coloring

    Get PDF
    Based on a non-rigorous formalism called the "cavity method", physicists have put forward intriguing predictions on phase transitions in discrete structures. One of the most remarkable ones is that in problems such as random kk-SAT or random graph kk-coloring, very shortly before the threshold for the existence of solutions there occurs another phase transition called "condensation" [Krzakala et al., PNAS 2007]. The existence of this phase transition appears to be intimately related to the difficulty of proving precise results on, e.g., the kk-colorability threshold as well as to the performance of message passing algorithms. In random graph kk-coloring, there is a precise conjecture as to the location of the condensation phase transition in terms of a distributional fixed point problem. In this paper we prove this conjecture for kk exceeding a certain constant k0k_0

    The condensation transition in random hypergraph 2-coloring

    Full text link
    For many random constraint satisfaction problems such as random satisfiability or random graph or hypergraph coloring, the best current estimates of the threshold for the existence of solutions are based on the first and the second moment method. However, in most cases these techniques do not yield matching upper and lower bounds. Sophisticated but non-rigorous arguments from statistical mechanics have ascribed this discrepancy to the existence of a phase transition called condensation that occurs shortly before the actual threshold for the existence of solutions and that affects the combinatorial nature of the problem (Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova: PNAS 2007). In this paper we prove for the first time that a condensation transition exists in a natural random CSP, namely in random hypergraph 2-coloring. Perhaps surprisingly, we find that the second moment method breaks down strictly \emph{before} the condensation transition. Our proof also yields slightly improved bounds on the threshold for random hypergraph 2-colorability. We expect that our techniques can be extended to other, related problems such as random k-SAT or random graph k-coloring

    Solution space structure of random constraint satisfaction problems with growing domains

    Full text link
    In this paper we study the solution space structure of model RB, a standard prototype of Constraint Satisfaction Problem (CSPs) with growing domains. Using rigorous the first and the second moment method, we show that in the solvable phase close to the satisfiability transition, solutions are clustered into exponential number of well-separated clusters, with each cluster contains sub-exponential number of solutions. As a consequence, the system has a clustering (dynamical) transition but no condensation transition. This picture of phase diagram is different from other classic random CSPs with fixed domain size, such as random K-Satisfiability (K-SAT) and graph coloring problems, where condensation transition exists and is distinct from satisfiability transition. Our result verifies the non-rigorous results obtained using cavity method from spin glass theory, and sheds light on the structures of solution spaces of problems with a large number of states.Comment: 8 pages, 1 figure

    Phase Transitions and Computational Difficulty in Random Constraint Satisfaction Problems

    Full text link
    We review the understanding of the random constraint satisfaction problems, focusing on the q-coloring of large random graphs, that has been achieved using the cavity method of the physicists. We also discuss the properties of the phase diagram in temperature, the connections with the glass transition phenomenology in physics, and the related algorithmic issues.Comment: 10 pages, Proceedings of the International Workshop on Statistical-Mechanical Informatics 2007, Kyoto (Japan) September 16-19, 200

    Threshold Saturation in Spatially Coupled Constraint Satisfaction Problems

    Full text link
    We consider chains of random constraint satisfaction models that are spatially coupled across a finite window along the chain direction. We investigate their phase diagram at zero temperature using the survey propagation formalism and the interpolation method. We prove that the SAT-UNSAT phase transition threshold of an infinite chain is identical to the one of the individual standard model, and is therefore not affected by spatial coupling. We compute the survey propagation complexity using population dynamics as well as large degree approximations, and determine the survey propagation threshold. We find that a clustering phase survives coupling. However, as one increases the range of the coupling window, the survey propagation threshold increases and saturates towards the phase transition threshold. We also briefly discuss other aspects of the problem. Namely, the condensation threshold is not affected by coupling, but the dynamic threshold displays saturation towards the condensation one. All these features may provide a new avenue for obtaining better provable algorithmic lower bounds on phase transition thresholds of the individual standard model
    • …
    corecore