7,257 research outputs found

    Adaptation to criticality through organizational invariance in embodied agents

    Get PDF
    Many biological and cognitive systems do not operate deep within one or other regime of activity. Instead, they are poised at critical points located at phase transitions in their parameter space. The pervasiveness of criticality suggests that there may be general principles inducing this behaviour, yet there is no well-founded theory for understanding how criticality is generated at a wide span of levels and contexts. In order to explore how criticality might emerge from general adaptive mechanisms, we propose a simple learning rule that maintains an internal organizational structure from a specific family of systems at criticality. We implement the mechanism in artificial embodied agents controlled by a neural network maintaining a correlation structure randomly sampled from an Ising model at critical temperature. Agents are evaluated in two classical reinforcement learning scenarios: the Mountain Car and the Acrobot double pendulum. In both cases the neural controller appears to reach a point of criticality, which coincides with a transition point between two regimes of the agent's behaviour. These results suggest that adaptation to criticality could be used as a general adaptive mechanism in some circumstances, providing an alternative explanation for the pervasive presence of criticality in biological and cognitive systems.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0525

    Seven properties of self-organization in the human brain

    Get PDF
    The principle of self-organization has acquired a fundamental significance in the newly emerging field of computational philosophy. Self-organizing systems have been described in various domains in science and philosophy including physics, neuroscience, biology and medicine, ecology, and sociology. While system architecture and their general purpose may depend on domain-specific concepts and definitions, there are (at least) seven key properties of self-organization clearly identified in brain systems: 1) modular connectivity, 2) unsupervised learning, 3) adaptive ability, 4) functional resiliency, 5) functional plasticity, 6) from-local-to-global functional organization, and 7) dynamic system growth. These are defined here in the light of insight from neurobiology, cognitive neuroscience and Adaptive Resonance Theory (ART), and physics to show that self-organization achieves stability and functional plasticity while minimizing structural system complexity. A specific example informed by empirical research is discussed to illustrate how modularity, adaptive learning, and dynamic network growth enable stable yet plastic somatosensory representation for human grip force control. Implications for the design of “strong” artificial intelligence in robotics are brought forward

    Knowledge management techniques for know-how transfer systems design : the case of an oil company

    Get PDF
    This paper presents a research in progress on the use of knowledge engineering and knowledge management techniques for the development of a strategic approach for the transfer of professional know-how. This transfer is based on the design of devices for sharing and learning clearly identified knowledge in the oil industry domains. This work is based on a pilot study which was carried out in the PED department (Petroleum Engineering & Development) and it deals with upstream activity of the oil group Sonatrach. A mapping of this know-how was established using a method based on mapping strategy. The main steps of the current approach are the strategic analysis for required competences, the processes analysis for professional know-how and a cross analysis for strategic competences and critical know-how. Emphasis is put on the strategic and critical aspects in the areas of knowledge where efforts are to be made in terms of capitalising, sharing, learning and transfer.Learning, E-learning, Knowledge management, Knowledge map, Strategy map, Knowledge engineering, Knowledge servers, Computer assisted human learning
    • …
    corecore