93 research outputs found

    Reasoning-Supported Quality Assurance for Knowledge Bases

    Get PDF
    The increasing application of ontology reuse and automated knowledge acquisition tools in ontology engineering brings about a shift of development efforts from knowledge modeling towards quality assurance. Despite the high practical importance, there has been a substantial lack of support for ensuring semantic accuracy and conciseness. In this thesis, we make a significant step forward in ontology engineering by developing a support for two such essential quality assurance activities

    Query Processing in a P2P Network of Taxonomy-based Information Sources

    Get PDF
    In this study we address the problem of answering queries over a peer-to-peer system of taxonomy-based sources. A taxonomy states subsumption relationships between negation-free DNF formulas on terms and negation-free conjunctions of terms. To the end of laying the foundations of our study, we first consider the centralized case, deriving the complexity of the decision problem and of query evaluation. We conclude by presenting an algorithm that is efficient in data complexity and is based on hypergraphs. We then move to the distributed case, and introduce a logical model of a network of taxonomy-based sources. On such network, a distributed version of the centralized algorithm is then presented, based on a message passing paradigm, and its correctness is proved. We finally discuss optimization issues, and relate our work to the literature

    Error-Tolerant Reasoning in the Description Logic EL

    Get PDF
    Developing and maintaining ontologies is an expensive and error-prone task. After an error is detected, users may have to wait for a long time before a corrected version of the ontology is available. In the meantime, one might still want to derive meaningful knowledge from the ontology, while avoiding the known errors. We study error-tolerant reasoning tasks in the description logic EL. While these problems are intractable, we propose methods for improving the reasoning times by precompiling information about the known errors and using proof-theoretic techniques for computing justifications. A prototypical implementation shows that our approach is feasible for large ontologies used in practice

    Merge algorithm for circuit partitioning

    Get PDF

    Efficient Factor Graph Fusion for Multi-robot Mapping

    Get PDF
    This work presents a novel method to efficiently factorize the combination of multiple factor graphs having common variables of estimation. The fast-paced innovation in the algebraic graph theory has enabled new tools of state estimation like factor graphs. Recent factor graph formulation for Simultaneous Localization and Mapping (SLAM) like Incremental Smoothing and Mapping using the Bayes tree (ISAM2) has been very successful and garnered much attention. Variable ordering, a well-known technique in linear algebra is employed for solving the factor graph. Our primary contribution in this work is to reuse the variable ordering of the graphs being combined to find the ordering of the fused graph. In the case of mapping, multiple robots provide a great advantage over single robot by providing a faster map coverage and better estimation quality. This coupled with an inevitable increase in the number of robots around us produce a demand for faster algorithms. For example, a city full of self-driving cars could pool their observation measurements rapidly to plan a traffic free navigation. By reusing the variable ordering of the parent graphs we were able to produce an order-of-magnitude difference in the time required for solving the fused graph. We also provide a formal verification to show that the proposed strategy does not violate any of the relevant standards. A common problem in multi-robot SLAM is relative pose graph initialization to produce a globally consistent map. The other contribution addresses this by minimizing a specially formulated error function as a part of solving the factor graph. The performance is illustrated on a publicly available SuiteSparse dataset and the multi-robot AP Hill dataset
    • …
    corecore