4,305 research outputs found

    Complexity of Manipulative Actions When Voting with Ties

    Full text link
    Most of the computational study of election problems has assumed that each voter's preferences are, or should be extended to, a total order. However in practice voters may have preferences with ties. We study the complexity of manipulative actions on elections where voters can have ties, extending the definitions of the election systems (when necessary) to handle voters with ties. We show that for natural election systems allowing ties can both increase and decrease the complexity of manipulation and bribery, and we state a general result on the effect of voters with ties on the complexity of control.Comment: A version of this paper will appear in ADT-201

    How many candidates are needed to make elections hard to manipulate?

    Full text link
    In multiagent settings where the agents have different preferences, preference aggregation is a central issue. Voting is a general method for preference aggregation, but seminal results have shown that all general voting protocols are manipulable. One could try to avoid manipulation by using voting protocols where determining a beneficial manipulation is hard computationally. The complexity of manipulating realistic elections where the number of candidates is a small constant was recently studied (Conitzer 2002), but the emphasis was on the question of whether or not a protocol becomes hard to manipulate for some constant number of candidates. That work, in many cases, left open the question: How many candidates are needed to make elections hard to manipulate? This is a crucial question when comparing the relative manipulability of different voting protocols. In this paper we answer that question for the voting protocols of the earlier study: plurality, Borda, STV, Copeland, maximin, regular cup, and randomized cup. We also answer that question for two voting protocols for which no results on the complexity of manipulation have been derived before: veto and plurality with runoff. It turns out that the voting protocols under study become hard to manipulate at 3 candidates, 4 candidates, 7 candidates, or never

    Parliamentary Voting Procedures: Agenda Control, Manipulation, and Uncertainty

    Full text link
    We study computational problems for two popular parliamentary voting procedures: the amendment procedure and the successive procedure. While finding successful manipulations or agenda controls is tractable for both procedures, our real-world experimental results indicate that most elections cannot be manipulated by a few voters and agenda control is typically impossible. If the voter preferences are incomplete, then finding which alternatives can possibly win is NP-hard for both procedures. Whilst deciding if an alternative necessarily wins is coNP-hard for the amendment procedure, it is polynomial-time solvable for the successive one

    Reinstating Combinatorial Protections for Manipulation and Bribery in Single-Peaked and Nearly Single-Peaked Electorates

    Full text link
    Understanding when and how computational complexity can be used to protect elections against different manipulative actions has been a highly active research area over the past two decades. A recent body of work, however, has shown that many of the NP-hardness shields, previously obtained, vanish when the electorate has single-peaked or nearly single-peaked preferences. In light of these results, we investigate whether it is possible to reimpose NP-hardness shields for such electorates by allowing the voters to specify partial preferences instead of insisting they cast complete ballots. In particular, we show that in single-peaked and nearly single-peaked electorates, if voters are allowed to submit top-truncated ballots, then the complexity of manipulation and bribery for many voting rules increases from being in P to being NP-complete.Comment: 28 pages; A shorter version of this paper will appear at the 30th AAAI Conference on Artificial Intelligence (AAAI-16

    Computational Aspects of Nearly Single-Peaked Electorates

    Full text link
    Manipulation, bribery, and control are well-studied ways of changing the outcome of an election. Many voting rules are, in the general case, computationally resistant to some of these manipulative actions. However when restricted to single-peaked electorates, these rules suddenly become easy to manipulate. Recently, Faliszewski, Hemaspaandra, and Hemaspaandra studied the computational complexity of strategic behavior in nearly single-peaked electorates. These are electorates that are not single-peaked but close to it according to some distance measure. In this paper we introduce several new distance measures regarding single-peakedness. We prove that determining whether a given profile is nearly single-peaked is NP-complete in many cases. For one case we present a polynomial-time algorithm. In case the single-peaked axis is given, we show that determining the distance is always possible in polynomial time. Furthermore, we explore the relations between the new notions introduced in this paper and existing notions from the literature.Comment: Published in the Journal of Artificial Intelligence Research (JAIR). A short version of this paper appeared in the proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2013). An even earlier version appeared in the proceedings of the Fourth International Workshop on Computational Social Choice 2012 (COMSOC 2012
    • …
    corecore