1,273 research outputs found

    Numerical Methods for Quasicrystals

    Full text link
    Quasicrystals are one kind of space-filling structures. The traditional crystalline approximant method utilizes periodic structures to approximate quasicrystals. The errors of this approach come from two parts: the numerical discretization, and the approximate error of Simultaneous Diophantine Approximation which also determines the size of the domain necessary for accurate solution. As the approximate error decreases, the computational complexity grows rapidly, and moreover, the approximate error always exits unless the computational region is the full space. In this work we focus on the development of numerical method to compute quasicrystals with high accuracy. With the help of higher-dimensional reciprocal space, a new projection method is developed to compute quasicrystals. The approach enables us to calculate quasicrystals rather than crystalline approximants. Compared with the crystalline approximant method, the projection method overcomes the restrictions of the Simultaneous Diophantine Approximation, and can also use periodic boundary conditions conveniently. Meanwhile, the proposed method efficiently reduces the computational complexity through implementing in a unit cell and using pseudospectral method. For illustrative purpose we work with the Lifshitz-Petrich model, though our present algorithm will apply to more general systems including quasicrystals. We find that the projection method can maintain the rotational symmetry accurately. More significantly, the algorithm can calculate the free energy density to high precision.Comment: 27 pages, 8 figures, 6 table

    Minimizing the number of lattice points in a translated polygon

    Full text link
    The parametric lattice-point counting problem is as follows: Given an integer matrix A∈Zm×nA \in Z^{m \times n}, compute an explicit formula parameterized by b∈Rmb \in R^m that determines the number of integer points in the polyhedron {x∈Rn:Ax≤b}\{x \in R^n : Ax \leq b\}. In the last decade, this counting problem has received considerable attention in the literature. Several variants of Barvinok's algorithm have been shown to solve this problem in polynomial time if the number nn of columns of AA is fixed. Central to our investigation is the following question: Can one also efficiently determine a parameter bb such that the number of integer points in {x∈Rn:Ax≤b}\{x \in R^n : Ax \leq b\} is minimized? Here, the parameter bb can be chosen from a given polyhedron Q⊆RmQ \subseteq R^m. Our main result is a proof that finding such a minimizing parameter is NPNP-hard, even in dimension 2 and even if the parametrization reflects a translation of a 2-dimensional convex polygon. This result is established via a relationship of this problem to arithmetic progressions and simultaneous Diophantine approximation. On the positive side we show that in dimension 2 there exists a polynomial time algorithm for each fixed kk that either determines a minimizing translation or asserts that any translation contains at most 1+1/k1 + 1/k times the minimal number of lattice points

    The Polyhedron-Hitting Problem

    Full text link
    We consider polyhedral versions of Kannan and Lipton's Orbit Problem (STOC '80 and JACM '86)---determining whether a target polyhedron V may be reached from a starting point x under repeated applications of a linear transformation A in an ambient vector space Q^m. In the context of program verification, very similar reachability questions were also considered and left open by Lee and Yannakakis in (STOC '92). We present what amounts to a complete characterisation of the decidability landscape for the Polyhedron-Hitting Problem, expressed as a function of the dimension m of the ambient space, together with the dimension of the polyhedral target V: more precisely, for each pair of dimensions, we either establish decidability, or show hardness for longstanding number-theoretic open problems

    Open Diophantine Problems

    Full text link
    We collect a number of open questions concerning Diophantine equations, Diophantine Approximation and transcendental numbers. Revised version: corrected typos and added references.Comment: 58 pages. to appear in the Moscow Mathematical Journal vo. 4 N.1 (2004) dedicated to Pierre Cartie

    Convex Combinatorial Optimization

    Full text link
    We introduce the convex combinatorial optimization problem, a far reaching generalization of the standard linear combinatorial optimization problem. We show that it is strongly polynomial time solvable over any edge-guaranteed family, and discuss several applications

    Positivity Problems for Low-Order Linear Recurrence Sequences

    Full text link
    We consider two decision problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem} (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, with complexity in the Counting Hierarchy for Positivity, and in polynomial time for Ultimate Positivity. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers

    Quadratic compact knapsack public-key cryptosystem

    Get PDF
    AbstractKnapsack-type cryptosystems were among the first public-key cryptographic schemes to be invented. Their NP-completeness nature and the high speed in encryption/decryption made them very attractive. However, these cryptosystems were shown to be vulnerable to the low-density subset-sum attacks or some key-recovery attacks. In this paper, additive knapsack-type public-key cryptography is reconsidered. We propose a knapsack-type public-key cryptosystem by introducing an easy quadratic compact knapsack problem. The system uses the Chinese remainder theorem to disguise the easy knapsack sequence. The encryption function of the system is nonlinear about the message vector. Under the relinearization attack model, the system enjoys a high density. We show that the knapsack cryptosystem is secure against the low-density subset-sum attacks by observing that the underlying compact knapsack problem has exponentially many solutions. It is shown that the proposed cryptosystem is also secure against some brute-force attacks and some known key-recovery attacks including the simultaneous Diophantine approximation attack and the orthogonal lattice attack
    • …
    corecore