18 research outputs found

    Solutions to sequencing and bargaining games

    Get PDF

    Dynamic strategic interactions : analysis and mechanism design

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 225-232).Modern systems, such as engineering systems with autonomous entities, markets, and financial networks, consist of self-interested agents with potentially conflicting objectives. These agents interact in a dynamic manner, modifying their strategies over time to improve their payoffs. The presence of self-interested agents in such systems, necessitates the analysis of the impact of multi-agent decision making on the overall system, and the design of new systems with improved performance guarantees. Motivated by this observation, in the first part of this thesis we focus on fundamental structural properties of games, and exploit them to provide a new framework for analyzing the limiting behavior of strategy update rules in various game-theoretic settings. In the second part, we investigate the design problem of an auctioneer who uses iterative multi-- item auctions for efficient allocation of resources. More specifically, in the first part of the thesis we focus on potential games, a special class of games with desirable equilibrium and dynamic properties, and analyze their preference structure. Exploiting this structure we obtain a decomposition of arbitrary games into three components, which we refer to as the potential, harmonic, and nonstrategic components. Intuitively, the potential component of a game captures interactions that can equivalently be represented as a common interest game, while the harmonic part represents conflicts between the interests of the players. We make this intuition precise by studying the properties of these two components, and establish that indeed they have quite distinct and remarkable characteristics. The decomposition also allows us to approximate a given game with a potential game. We show that the set of approximate equilibria of an arbitrary game can be characterized through the equilibria of a potential game that approximates it. The decomposition provides a valuable tool for the analysis of dynamics in games. Earlier literature established that many natural strategy update rules converge to a Nash equilibrium in potential games. We show that games that are close to a potential game exhibit similar properties. In particular, we focus on three commonly studied discrete-time update rules (better/best response, logit response, and discrete-time fictitious play dynamics), and establish that in near-potential games, the limiting behavior of these update rules can be characterized by an approximate equilibrium set, size of which is proportional to the distance of the original game from a potential game. Since a close potential game to a given game can be systematically found via decomposition, our results suggest a systematic framework for studying the limiting behavior of adaptive dynamics in arbitrary finite strategic form games: the limiting behavior of dynamics in a given game can be characterized by first approximating this game with a potential game, and then analyzing the limiting behavior of dynamics in the potential game. In the second part of the thesis, we change our focus to implementing efficient outcomes in multi-agent settings by using simple mechanisms. In particular, we develop novel efficient iterative auction formats for multi-item environments, where items exhibit value complementarities/substitutabilities. We obtain our results by focusing on a special class of value functions, which we refer to as graphical valuations. These valuations are not fully general, but importantly they capture value complementarity/substitutability in important practical settings, while allowing for a compact representation of the value functions. We start our analysis by first analyzing how the special structure of graphical valuations can be exploited to design simple iterative auction formats. We show that in settings where the underlying value graph is a tree (and satisfies an additional technical condition), a Walrasian equilibrium always exists (even in the presence of value complementarities). Using this result we provide a linear programming formulation of the efficient allocation problem for this class of valuations. Additionally, we demonstrate that a Walrasian equilibrium may not exist, when the underlying value graph is more general. However, we also establish that in this case a more general pricing equilibrium always exists, and provide a stronger linear programming formulation that can be used to identify the efficient allocation for general graphical valuations. We then consider solutions of these linear programming formulations using iterative algorithms. Complementing these iterative algorithms with appropriate payment rules, we obtain iterative auction formats that implement the efficient outcome at an (ex-post perfect) equilibrium. The auction formats we obtain rely on simple pricing rules that, in the most general case, require offering a bidder-specific price for each item, and bidder-specific discounts/markups for pairs of items. Our results in this part of the thesis suggest that when value functions of bidders exhibit some special structure, it is possible to systematically exploit this structure in order to develop simple efficient iterative auction formats.by Utku Ozan Candogan.Ph.D

    Essays on modeling and analysis of dynamic sociotechnical systems

    Get PDF
    A sociotechnical system is a collection of humans and algorithms that interact under the partial supervision of a decentralized controller. These systems often display in- tricate dynamics and can be characterized by their unique emergent behavior. In this work, we describe, analyze, and model aspects of three distinct classes of sociotech- nical systems: financial markets, social media platforms, and elections. Though our work is diverse in subject matter content, it is unified though the study of evolution- and adaptation-driven change in social systems and the development of methods used to infer this change. We first analyze evolutionary financial market microstructure dynamics in the context of an agent-based model (ABM). The ABM’s matching engine implements a frequent batch auction, a recently-developed type of price-discovery mechanism. We subject simple agents to evolutionary pressure using a variety of selection mech- anisms, demonstrating that quantile-based selection mechanisms are associated with lower market-wide volatility. We then evolve deep neural networks in the ABM and demonstrate that elite individuals are profitable in backtesting on real foreign ex- change data, even though their fitness had never been evaluated on any real financial data during evolution. We then turn to the extraction of multi-timescale functional signals from large panels of timeseries generated by sociotechnical systems. We introduce the discrete shocklet transform (DST) and associated similarity search algorithm, the shocklet transform and ranking (STAR) algorithm, to accomplish this task. We empirically demonstrate the STAR algorithm’s invariance to quantitative functional parameteri- zation and provide use case examples. The STAR algorithm compares favorably with Twitter’s anomaly detection algorithm on a feature extraction task. We close by using STAR to automatically construct a narrative timeline of societally-significant events using a panel of Twitter word usage timeseries. Finally, we model strategic interactions between the foreign intelligence service (Red team) of a country that is attempting to interfere with an election occurring in another country, and the domestic intelligence service of the country in which the election is taking place (Blue team). We derive subgame-perfect Nash equilibrium strategies for both Red and Blue and demonstrate the emergence of arms race inter- ference dynamics when either player has “all-or-nothing” attitudes about the result of the interference episode. We then confront our model with data from the 2016 U.S. presidential election contest, in which Russian military intelligence interfered. We demonstrate that our model captures the qualitative dynamics of this interference for most of the time under stud

    Proceedings of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    No full text
    International audienceThe Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization started off as a series of workshops organized bi-annually by either Köln University or Twente University. As its importance grew over time, it re-centered its geographical focus by including northern Italy (CTW04 in Menaggio, on the lake Como and CTW08 in Gargnano, on the Garda lake). This year, CTW (in its eighth edition) will be staged in France for the first time: more precisely in the heart of Paris, at the Conservatoire National d’Arts et Métiers (CNAM), between 2nd and 4th June 2009, by a mixed organizing committee with members from LIX, Ecole Polytechnique and CEDRIC, CNAM

    Evolving Approaches to the Economics of Public Policy: Views of Award-Winning Economists

    Get PDF
    For policymakers, economics is a useful tool in the development and evaluation of public policy. And like many sciences, economics is evolving to become more interdisciplinary in its approach. Today, economic theory is often used in conjunction with insights gleaned from psychology and sociology to create a more inclusive, real-world approach to implementing public policy. In this book, five award-winning economists tackle a diverse range of topics and show how applied economics has evolved to give policymakers a more nuanced approach to policy development. The award-winning economists included in this volume are Erica Field, Nancy Folbre, Avner Grief, David M. Kreps, and Michael J. Piore, and the topics they discuss include microfinance, human capital, societal institutions, worker motivation, and workplace regulation.https://research.upjohn.org/up_press/1258/thumbnail.jp

    Dynamic pricing and inventory control with no backorders under uncertainty and competition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2006.Includes bibliographical references (p. 271-284).Recently, revenue management has become popular in many industries such as the airline, the supply chain, and the transportation industry. Decision makers realize that even small improvements in their operations can have a significant impact on their profits. Nevertheless, determining pricing and inventory optimal policies in more realistic settings may not be a tractable task. Ignoring the potential inaccuracy of parameters may lead to a solution that actually performs poorly, or even that violates some constraints. Finally, competitors impact a supplier's best strategy by influencing her demand, revenues, and field of possible actions. Taking a game theoretic approach and determining the equilibrium of the system can help understand its state in the long run. This thesis presents a continuous time optimal control model for studying a dynamic pricing and inventory control problem in a make-to-stock manufacturing system. We consider a multi-product capacitated, dynamic setting. We introduce a demand-based model with convex costs. A key part of the model is that no backorders are allowed, as this introduces a constraint on the state variables. We first study the deterministic version of this problem.(cont.) We introduce and study a solution method that enables to compute the optimal solution on a finite time horizon in a monopoly setting. Our results illustrate the role of capacity and the effects of the dynamic nature of demand. We then introduce an additive model of demand uncertainty. We use a robust optimization approach to protect the solution against data uncertainty in a tractable manner, and without imposing stringent assumptions on available information. We show that the robust formulation is of the same order of complexity as the deterministic problem and demonstrate how to adapt solution method. Finally, we consider a duopoly setting and use a more general model of additive and multiplicative demand uncertainty. We formulate the robust problem as a coupled constraint differential game. Using a quasi-variational inequality reformulation, we prove the existence of Nash equilibria in continuous time and study issues of uniqueness. Finally, we introduce a relaxation-type algorithm and prove its convergence to a particular Nash equilibrium (normalized Nash equilibrium) in discrete time.by Elodie Adida.Ph.D

    Assortative matching in labor and marriage markets

    Get PDF

    Advances in Spatial Theory and Dynamics

    Get PDF
    This book originates from two meetings, set apart in time but closely connected by continuing collaborative efforts between researchers in an international network. The first of these meetings took place at IIASA in October 1984, organized by IIASA's Regional Issues Project under the title "Dynamic Analysis of Spatial Development". About half of the papers in this volume were presented at that meeting. These contributions have been elaborated and revised considerably during the preparation of this volume, and can now be regarded as mature papers embracing the frontiers of spatial and economic dynamics. Another set of contributions was presented during the European Summer Institute in Regional Science held at the University of Umea in June 1986. The Summer Institute was organized by CERUM in collaboration with the Departments of Economics and Geography at the same university. The contributions have been drawn from the sessions on technological change, nonlinear dynamics in spatial networks and infrastructure development. This is reflected in the three parts of the volume (1) Competition, specialization and technological change, (2) Spatial interaction, (3) Urban and regional infrastructure
    corecore