17,056 research outputs found

    Finding Temporal Paths Under Waiting Time Constraints

    Get PDF
    Computing a (short) path between two vertices is one of the most fundamental primitives in graph algorithmics. In recent years, the study of paths in temporal graphs, that is, graphs where the vertex set is fixed but the edge set changes over time, gained more and more attention. A path is time-respecting, or temporal, if it uses edges with non-decreasing time stamps. We investigate a basic constraint for temporal paths, where the time spent at each vertex must not exceed a given duration ?, referred to as ?-restless temporal paths. This constraint arises naturally in the modeling of real-world processes like packet routing in communication networks and infection transmission routes of diseases where recovery confers lasting resistance. While finding temporal paths without waiting time restrictions is known to be doable in polynomial time, we show that the "restless variant" of this problem becomes computationally hard even in very restrictive settings. For example, it is W[1]-hard when parameterized by the feedback vertex number or the pathwidth of the underlying graph. The main question thus is whether the problem becomes tractable in some natural settings. We explore several natural parameterizations, presenting FPT algorithms for three kinds of parameters: (1) output-related parameters (here, the maximum length of the path), (2) classical parameters applied to the underlying graph (e.g., feedback edge number), and (3) a new parameter called timed feedback vertex number, which captures finer-grained temporal features of the input temporal graph, and which may be of interest beyond this work

    Timely Data Delivery in a Realistic Bus Network

    Get PDF
    Abstract—WiFi-enabled buses and stops may form the backbone of a metropolitan delay tolerant network, that exploits nearby communications, temporary storage at stops, and predictable bus mobility to deliver non-real time information. This paper studies the problem of how to route data from its source to its destination in order to maximize the delivery probability by a given deadline. We assume to know the bus schedule, but we take into account that randomness, due to road traffic conditions or passengers boarding and alighting, affects bus mobility. We propose a simple stochastic model for bus arrivals at stops, supported by a study of real-life traces collected in a large urban network. A succinct graph representation of this model allows us to devise an optimal (under our model) single-copy routing algorithm and then extend it to cases where several copies of the same data are permitted. Through an extensive simulation study, we compare the optimal routing algorithm with three other approaches: minimizing the expected traversal time over our graph, minimizing the number of hops a packet can travel, and a recently-proposed heuristic based on bus frequencies. Our optimal algorithm outperforms all of them, but most of the times it essentially reduces to minimizing the expected traversal time. For values of deadlines close to the expected delivery time, the multi-copy extension requires only 10 copies to reach almost the performance of the costly flooding approach. I

    Capacity Based Evacuation with Dynamic Exit Signs

    Full text link
    Exit paths in buildings are designed to minimise evacuation time when the building is at full capacity. We present an evacuation support system which does this regardless of the number of evacuees. The core concept is to even-out congestion in the building by diverting evacuees to less-congested paths in order to make maximal usage of all accessible routes throughout the entire evacuation process. The system issues a set of flow-optimal routes using a capacity-constrained routing algorithm which anticipates evolutions in path metrics using the concept of "future capacity reservation". In order to direct evacuees in an intuitive manner whilst implementing the routing algorithm's scheme, we use dynamic exit signs, i.e. whose pointing direction can be controlled. To make this system practical and minimise reliance on sensors during the evacuation, we use an evacuee mobility model and make several assumptions on the characteristics of the evacuee flow. We validate this concept using simulations, and show how the underpinning assumptions may limit the system's performance, especially in low-headcount evacuations

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Interactive Planning and Sensing for Aircraft in Uncertain Environments with Spatiotemporally Evolving Threats

    Get PDF
    Autonomous aerial, terrestrial, and marine vehicles provide a platform for several applications including cargo transport, information gathering, surveillance, reconnaissance, and search-and-rescue. To enable such applications, two main technical problems are commonly addressed.On the one hand, the motion-planning problem addresses optimal motion to a destination: an application example is the delivery of a package in the shortest time with least fuel. Solutions to this problem often assume that all relevant information about the environment is available, possibly with some uncertainty. On the other hand, the information gathering problem addresses the maximization of some metric of information about the environment: application examples include such as surveillance and environmental monitoring. Solutions to the motion-planning problem in vehicular autonomy assume that information about the environment is available from three sources: (1) the vehicle’s own onboard sensors, (2) stationary sensor installations (e.g. ground radar stations), and (3) other information gathering vehicles, i.e., mobile sensors, especially with the recent emphasis on collaborative teams of autonomous vehicles with heterogeneous capabilities. Each source typically processes the raw sensor data via estimation algorithms. These estimates are then available to a decision making system such as a motion- planning algorithm. The motion-planner may use some or all of the estimates provided. There is an underlying assumption of “separation� between the motion-planning algorithm and the information about environment. This separation is common in linear feedback control systems, where estimation algorithms are designed independent of control laws, and control laws are designed with the assumption that the estimated state is the true state. In the case of motion-planning, there is no reason to believe that such a separation between the motion-planning algorithm and the sources of estimated environment information will lead to optimal motion plans, even if the motion planner and the estimators are themselves optimal. The goal of this dissertation is to investigate whether the removal of this separation, via interactive motion-planning and sensing, can significantly improve the optimality of motion- planning. The major contribution of this work is interactive planning and sensing. We consider the problem of planning the path of a vehicle, which we refer to as the actor, to traverse a threat field with minimum threat exposure. The threat field is an unknown, time- variant, and strictly positive scalar field defined on a compact 2D spatial domain – the actor’s workspace. The threat field is estimated by a network of mobile sensors that can measure the threat field pointwise. All measurements are noisy. The objective is to determine a path for the actor to reach a desired goal with minimum risk, which is a measure sensitive not only to the threat exposure itself, but also to the uncertainty therein. A novelty of this problem setup is that the actor can communicate with the sensor network and request that the sensors position themselves in a procedure we call sensor reconfiguration such that the actor’s risk is minimized. This work continues with a foundation in motion planning in time-varying fields where waiting is a control input. Waiting is examined in the context of finding an optimal path with considerations for the cost of exposure to a threat field, the cost of movement, and the cost of waiting. For example, an application where waiting may be beneficial in motion-planning is the delivery of a package where adverse weather may pose a risk to the safety of a UAV and its cargo. In such scenarios, an optimal plan may include “waiting until the storm passes.� Results on computational efficiency and optimality of considering waiting in path- planning algorithms are presented. In addition, the relationship of waiting in a time- varying field represented with varying levels of resolution, or multiresolution is studied. Interactive planning and sensing is further developed for the case of time-varying environments. This proposed extension allows for the evaluation of different mission windows, finite sensor network reconfiguration durations, finite planning durations, and varying number of available sensors. Finally, the proposed method considers the effect of waiting in the path planner under the interactive planning and sensing for time-varying fields framework. Future work considers various extensions of the proposed interactive planning and sensing framework including: generalizing the environment using Gaussian processes, sensor reconfiguration costs, multiresolution implementations, nonlinear parameters, decentralized sensor networks and an application to aerial payload delivery by parafoil

    Delay-Robust Routes in Temporal Graphs

    Get PDF
    Most transportation networks are inherently temporal: Connections (e.g. flights, train runs) are only available at certain, scheduled times. When transporting passengers or commodities, this fact must be considered for the the planning of itineraries. This has already led to several well-studied algorithmic problems on temporal graphs. The difficulty of the described task is increased by the fact that connections are often unreliable - in particular, many modes of transportation suffer from occasional delays. If these delays cause subsequent connections to be missed, the consequences can be severe. Thus, it is a vital problem to design itineraries that are robust to (small) delays. We initiate the study of this problem from a parameterized complexity perspective by proving its NP-completeness as well as several hardness and tractability results for natural parameterizations
    corecore