10,091 research outputs found

    Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

    Full text link
    We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain classes of path-complete graphs including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two matrices. We provide approximation guarantees for several families of path-complete graphs, such as the De Bruijn graphs, establishing as a byproduct a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has gone through two major rounds of revision. In particular, a section on the performance of our algorithm on application-motivated problems has been added and a more comprehensive literature review is presente

    Numerical Studies of the Gauss Lattice Problem

    Get PDF
    The difference between the number of lattice points N(R) that lie in x^2 + y^2 ≤ R^2 and the area of that circle, d(R) = N(R) - πR^2, can be bounded by |d(R)| ≤ KR^θ. Gauss showed that this holds for θ = 1, but the least value for which it holds is an open problem in number theory. We have sought numerical evidence by tabulating N(R) up to R ≈ 55,000. From the convex hull bounding log |d(R)| versus log R we obtain the bound θ ≤ 0.575, which is significantly better than the best analytical result θ ≤ 0.6301 ... due to Huxley. The behavior of d(R) is of interest to those studying quantum chaos

    Graphical Models for Optimal Power Flow

    Get PDF
    Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithm for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary distribution networks and handle mixed-integer optimization problems. Further, it can be implemented in a distributed message-passing fashion that is scalable and is suitable for "smart grid" applications like control of distributed energy resources. We evaluate our technique numerically on several benchmark networks and show that practical OPF problems can be solved effectively using this approach.Comment: To appear in Proceedings of the 22nd International Conference on Principles and Practice of Constraint Programming (CP 2016

    Dynamical Phase Transitions for Fluxes of Mass on Finite Graphs

    Get PDF
    We study the time-averaged flux in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flux is given by a variational formulation involving paths of the density and flux. We give sufficient conditions under which the large deviations of a given time averaged flux is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph

    Euler-Poincare' Characteristic and Phase Transition in the Potts Model

    Full text link
    Recent results concerning the topological properties of random geometrical sets have been successfully applied to the study of the morphology of clusters in percolation theory. This approach provides an alternative way of inspecting the critical behaviour of random systems in statistical mechanics. For the 2d q-states Potts model with q <= 6, intensive and accurate numerics indicates that the average of the Euler characteristic (taken with respect to the Fortuin-Kasteleyn random cluster measure) is an order parameter of the phase transition.Comment: 17 pages, 8 figures, 1 tabl
    • …
    corecore