229 research outputs found

    Non-linear dynamical analysis of biosignals

    Get PDF
    Biosignals are physiological signals that are recorded from various parts of the body. Some of the major biosignals are electromyograms (EMG), electroencephalograms (EEG) and electrocardiograms (ECG). These signals are of great clinical and diagnostic importance, and are analysed to understand their behaviour and to extract maximum information from them. However, they tend to be random and unpredictable in nature (non-linear). Conventional linear methods of analysis are insufficient. Hence, analysis using non-linear and dynamical system theory, chaos theory and fractal dimensions, is proving to be very beneficial. In this project, ECG signals are of interest. Changes in the normal rhythm of a human heart may result in different cardiac arrhythmias, which may be fatal or cause irreparable damage to the heart when sustained over long periods of time. Hence the ability to identify arrhythmias from ECG recordings is of importance for clinical diagnosis and treatment and also for understanding the electrophysiological mechanism of arrhythmias. To achieve this aim, algorithms were developed with the help of MATLAB® software. The classical logic of correlation was used in the development of algorithms to place signals into the various categories of cardiac arrhythmias. A sample set of 35 known ECG signals were obtained from the Physionet website for testing purposes. Later, 5 unknown ECG signals were used to determine the efficiency of the algorithms. A peak detection algorithm was written to detect the QRS complex. This complex is the most prominent waveform within an ECG signal and its shape, duration and time of occurrence provides valuable information about the current state of the heart. The peak detection algorithm gave excellent results with very good accuracy for all the downloaded ECG signals, and was developed using classical linear techniques. Later, a peak detection algorithm using the discrete wavelet transform (DWT) was implemented. This code was developed using nonlinear techniques and was amenable for implementation. Also, the time required for execution was reduced, making this code ideal for real-time processing. Finally, algorithms were developed to calculate the Kolmogorov complexity and Lyapunov exponent, which are nonlinear descriptors and enable the randomness and chaotic nature of ECG signals to be estimated. These measures of randomness and chaotic nature enable us to apply correct interrogative methods to the signal to extract maximum information. The codes developed gave fair results. It was possible to differentiate between normal ECGs and ECGs with ventricular fibrillation. The results show that the Kolmogorov complexity measure increases with an increase in pathology, approximately 12.90 for normal ECGs and increasing to 13.87 to 14.39 for ECGs with ventricular fibrillation and ventricular tachycardia. Similar results were obtained for Lyapunov exponent measures with a notable difference between normal ECG (0 – 0.0095) and ECG with ventricular fibrillation (0.1114 – 0.1799). However, it was difficult to differentiate between different types of arrhythmias.Biosignals are physiological signals that are recorded from various parts of the body. Some of the major biosignals are electromyograms (EMG), electroencephalograms (EEG) and electrocardiograms (ECG). These signals are of great clinical and diagnostic importance, and are analysed to understand their behaviour and to extract maximum information from them. However, they tend to be random and unpredictable in nature (non-linear). Conventional linear methods of analysis are insufficient. Hence, analysis using non-linear and dynamical system theory, chaos theory and fractal dimensions, is proving to be very beneficial. In this project, ECG signals are of interest. Changes in the normal rhythm of a human heart may result in different cardiac arrhythmias, which may be fatal or cause irreparable damage to the heart when sustained over long periods of time. Hence the ability to identify arrhythmias from ECG recordings is of importance for clinical diagnosis and treatment and also for understanding the electrophysiological mechanism of arrhythmias. To achieve this aim, algorithms were developed with the help of MATLAB® software. The classical logic of correlation was used in the development of algorithms to place signals into the various categories of cardiac arrhythmias. A sample set of 35 known ECG signals were obtained from the Physionet website for testing purposes. Later, 5 unknown ECG signals were used to determine the efficiency of the algorithms. A peak detection algorithm was written to detect the QRS complex. This complex is the most prominent waveform within an ECG signal and its shape, duration and time of occurrence provides valuable information about the current state of the heart. The peak detection algorithm gave excellent results with very good accuracy for all the downloaded ECG signals, and was developed using classical linear techniques. Later, a peak detection algorithm using the discrete wavelet transform (DWT) was implemented. This code was developed using nonlinear techniques and was amenable for implementation. Also, the time required for execution was reduced, making this code ideal for real-time processing. Finally, algorithms were developed to calculate the Kolmogorov complexity and Lyapunov exponent, which are nonlinear descriptors and enable the randomness and chaotic nature of ECG signals to be estimated. These measures of randomness and chaotic nature enable us to apply correct interrogative methods to the signal to extract maximum information. The codes developed gave fair results. It was possible to differentiate between normal ECGs and ECGs with ventricular fibrillation. The results show that the Kolmogorov complexity measure increases with an increase in pathology, approximately 12.90 for normal ECGs and increasing to 13.87 to 14.39 for ECGs with ventricular fibrillation and ventricular tachycardia. Similar results were obtained for Lyapunov exponent measures with a notable difference between normal ECG (0 – 0.0095) and ECG with ventricular fibrillation (0.1114 – 0.1799). However, it was difficult to differentiate between different types of arrhythmias

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Large deviations estimates for the multiscale analysis of heart rate variability

    Get PDF
    International audienceIn the realm of multiscale signal analysis, multifractal analysis provides with a natural and rich framework to measure the roughness of a time series. As such, it has drawn special attention of both mathematicians and practitioners, and led them to characterize relevant physiological factors impacting the heart rate variability. Notwithstanding these considerable progresses, multifractal analysis almost exclusively developed around the concept of Legendre singularity spectrum, for which efficient and elaborate estimators exist, but which are structurally blind to subtle features like non-concavity or, to a certain extent, non scaling of the distributions. Large deviations theory allows bypassing these limitations but it is only very recently that performing estimators were proposed to reliably compute the corresponding large deviations singularity spectrum. In this article, we illustrate the relevance of this approach, on both theoretical objects and on human heart rate signals from the Physionet public database. As conjectured, we verify that large deviations principles reveal significant information that otherwise remains hidden with classical approaches, and which can be reminiscent of some physiological characteristics. In particular we quantify the presence/absence of scale invariance of RR signals

    Studies on the dynamics of chaotic multi-wavelet reentrant propagation using a hybrid cellular automaton model of excitable tissue

    Full text link
    There is a compelling body of evidence implicating continuous propagation (reentry) sustained by multiple meandering wavelets in the pathology of advanced human atrial fibrillation (AF). This forms the basis for many current therapies such as the Cox MAZE procedure and its derivatives, which aim to create non-conducting lesions in order to "transect" these circuits before they form. Nevertheless, our ability to successfully treat persistent and permanent AF using catheter ablation remains inadequate due to current limitations of clinical mapping technology as well as an incomplete understanding of how to place lesions in order to maximize circuit transection and, more importantly, minimize AF burden. Here, we used a hybrid cellular automaton model to study the dynamics of chaotic, multi-wavelet reentry (MWR) in excitable tissue. First, we used reentry as an exemplar to investigate a hysteretic disease mechanism in a multistable nonlinear system. We found that certain interactions with the environment can cause persistent changes to system behavior without altering its structure or properties, thus leading to a disconnect between clinical symptoms and the underlying state of disease. Second, we developed a novel analytical method to characterize the spatiotemporal dynamics of MWR. We identified a heterogeneous spatial distribution of reentrant pathways that correlated with the spatial distribution of cell activation frequencies. Third, we investigated the impact of topological and geometrical substrate alterations on the dynamics of MWR. We demonstrated a multi-phasic relationship between obstacle size and the fate of individual episodes. Notably, for a narrow range of sizes, obstacles appeared to play an active role in rapidly converting MWR to stable structural reentry. Our studies indicate that reentrant-pathway distributions are non-uniform in heterogeneous media (such as the atrial myocardium) and suggest a clinically measurable correlate for identifying regions of high circuit density, supporting the feasibility of patient-specific targeted ablation. Moreover, we have elucidated the key mechanisms of interaction between focal obstacles and MWR, which has implications for the use of spot ablation to treat AF as some recent studies have suggested

    Fractals analysis of cardiac arrhythmias

    Get PDF
    Heart rhythms are generated by complex self-regulating systems governed by the laws of chaos. Consequently, heart rhythms have fractal organization, characterized by self-similar dynamics with long-range order operating over multiple time scales. This allows for the self-organization and adaptability of heart rhythms under stress. Breakdown of this fractal organization into excessive order or uncorrelated randomness leads to a less-adaptable system, characteristic of aging and disease. With the tools of nonlinear dynamics, this fractal breakdown can be quantified with potential applications to diagnostic and prognostic clinical assessment. In this paper, I review the methodologies for fractal analysis of cardiac rhythms and the current literature on their applications in the clinical context. A brief overview of the basic mathematics of fractals is also included. Furthermore, I illustrate the usefulness of these powerful tools to clinical medicine by describing a novel noninvasive technique to monitor drug therapy in atrial fibrillation

    Mapping the Substrate of Atrial Fibrillation: Tools and Techniques

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia that affects an estimated 33.5 million people worldwide. Despite its prevalence and economic burden, treatments remain relatively ineffective. Interventional treatments using catheter ablation have shown more success in cure rates than pharmacologic methods for AF. However, success rates diminish drastically in patients with more advanced forms of the disease. The focus of this research is to develop a mapping strategy to improve the success of ablation. To achieve this goal, I used a computational model of excitation in order to simulate atrial fibrillation and evaluate mapping strategies that could guide ablation. I first propose a substrate guided mapping strategy to allow patient-specific treatment rather than a one size fits all approach. Ablation guided by this method reduced AF episode durations compared to baseline durations and an equal amount of random ablation in computational simulations. Because the accuracy of electrogram mapping is dependent upon catheter-tissue contact, I then provide a method to identify the distance between the electrode recording sites and the tissue surface using only the electrogram signal. The algorithm was validated both in silico and in vivo. Finally, I develop a classification algorithm for the identification of activation patterns using simultaneous, multi-site electrode recordings to aid in the development of an appropriate ablation strategy during AF. These findings provide a framework for future mapping and ablation studies in humans and assist in the development of individualized ablation strategies for patients with higher disease burden

    The Contribution of Nonlinear Methods in the Understanding of Atrial Fibrillation

    Get PDF
    This work was supported by the projects TEC2010–20633 from the Spanish Ministry of Science and Innovation and PPII11–0194–8121 and PII1C09–0036–3237 from Junta de Comunidades de Castilla-La Mancha.Alcaraz Martínez, R.; Rieta Ibañez, JJ. (2013). The Contribution of Nonlinear Methods in the Understanding of Atrial Fibrillation. En Atrial Fibrillation - Mechanisms and Treatment. InTech. 181-204. https://doi.org/10.5772/53407S18120

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    A Mechanistically Guided Approach to Treatment of Multi-Wavelet Reentry: Experiments in a Computational Model of Cardiac Propagation

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the United States today. However, treatment options remain limited despite the enormous magnitude of both AF prevalence and the associated economic cost. Of those treatment options that are available, ablation-based interventional methods have demonstrated the highest rates of long-term cure. Unfortunately, these methods have substantially lower efficacy in patients with heavier burdens of disease, thus leaving the most affected individuals with the least hope for successful treatment. The focus of this research is to develop a mechanistically guided approach towards the treatment of multi-wavelet reentry (MWR), one of the primary drivers of AF. For this purpose, we use a computational model of electrical propagation in cardiac tissue to simulate both episodes of fibrillatory activity and the ablative treatment thereof. We demonstrate that the probability of forming the reentrant circuits necessary for continuous electrical activity is a function of the shape and size of a tissue as well as its underlying cellular properties. Ablation at tissue sites with high probability of circuit formation more efficiently reduces the overall duration of fibrillatory episodes than ablation at sites with low probability. We then propose and validate in silico a parameter-based metric for predicting the propensity of an individual tissue to support fibrillation, which we term the fibrillogenicity index. Using this metric, we develop an algorithm for prospectively determining optimized, tissue-specific ablation patterns. Finally, we examine the relationship between multi-wavelet reentry and focal drivers, and demonstrate that MWR and fibrillatory conduction exist along a continuum. We examine the complex interplay between functional and structural substrates within fibrillating tissue and define the mechanisms by which they promote the perpetuation of AF. These findings present a novel theoretical framework for understanding treatment of multi-wavelet reentry driven AF and provide a set of testable predictions that can serve to guide the design of future experimental studies aimed at advancing the rational design of patient-specific ablation sets for treating AF
    • …
    corecore