1,458,378 research outputs found

    The Complexity of the k-means Method

    Get PDF
    The k-means method is a widely used technique for clustering points in Euclidean space. While it is extremely fast in practice, its worst-case running time is exponential in the number of data points. We prove that the k-means method can implicitly solve PSPACE-complete problems, providing a complexity-theoretic explanation for its worst-case running time. Our result parallels recent work on the complexity of the simplex method for linear programming

    Randomized Dimensionality Reduction for k-means Clustering

    Full text link
    We study the topic of dimensionality reduction for kk-means clustering. Dimensionality reduction encompasses the union of two approaches: \emph{feature selection} and \emph{feature extraction}. A feature selection based algorithm for kk-means clustering selects a small subset of the input features and then applies kk-means clustering on the selected features. A feature extraction based algorithm for kk-means clustering constructs a small set of new artificial features and then applies kk-means clustering on the constructed features. Despite the significance of kk-means clustering as well as the wealth of heuristic methods addressing it, provably accurate feature selection methods for kk-means clustering are not known. On the other hand, two provably accurate feature extraction methods for kk-means clustering are known in the literature; one is based on random projections and the other is based on the singular value decomposition (SVD). This paper makes further progress towards a better understanding of dimensionality reduction for kk-means clustering. Namely, we present the first provably accurate feature selection method for kk-means clustering and, in addition, we present two feature extraction methods. The first feature extraction method is based on random projections and it improves upon the existing results in terms of time complexity and number of features needed to be extracted. The second feature extraction method is based on fast approximate SVD factorizations and it also improves upon the existing results in terms of time complexity. The proposed algorithms are randomized and provide constant-factor approximation guarantees with respect to the optimal kk-means objective value.Comment: IEEE Transactions on Information Theory, to appea

    Skill set profile clustering: the empty K-means algorithm with automatic specification of starting cluster centers

    Get PDF
    While studentsā€™ skill set profiles can be estimated with formal cognitive diagnosis models [8], their computational complexity makes simpler proxy skill estimates attractive [1, 4, 6]. These estimates can be clustered to generate groups of similar students. Often hierarchical agglomerative clustering or k-means clustering is utilized, requiring, for K skills, the specification of 2^K clusters. The number of skill set profiles/clusters can quickly become computationally intractable. Moreover, not all profiles may be present in the population. We present a flexible version of k-means that allows for empty clusters. We also specify a method to determine efficient starting centers based on the Q-matrix. Combining the two substantially improves the clustering results and allows for analysis of data sets previously thought impossible

    A strong direct product theorem for quantum query complexity

    Full text link
    We show that quantum query complexity satisfies a strong direct product theorem. This means that computing kk copies of a function with less than kk times the quantum queries needed to compute one copy of the function implies that the overall success probability will be exponentially small in kk. For a boolean function ff we also show an XOR lemma---computing the parity of kk copies of ff with less than kk times the queries needed for one copy implies that the advantage over random guessing will be exponentially small. We do this by showing that the multiplicative adversary method, which inherently satisfies a strong direct product theorem, is always at least as large as the additive adversary method, which is known to characterize quantum query complexity.Comment: V2: 19 pages (various additions and improvements, in particular: improved parameters in the main theorems due to a finer analysis of the output condition, and addition of an XOR lemma and a threshold direct product theorem in the boolean case). V3: 19 pages (added grant information
    • ā€¦
    corecore