139,722 research outputs found

    KL-Divergence Guided Two-Beam Viterbi Algorithm on Factorial HMMs

    Get PDF
    This thesis addresses the problem of the high computation complexity issue that arises when decoding hidden Markov models (HMMs) with a large number of states. A novel approach, the two-beam Viterbi, with an extra forward beam, for decoding HMMs is implemented on a system that uses factorial HMM to simultaneously recognize a pair of isolated digits on one audio channel. The two-beam Viterbi algorithm uses KL-divergence and hierarchical clustering to reduce the overall decoding complexity. This novel approach achieves 60% less computation compared to the baseline algorithm, the Viterbi beam search, while maintaining 82.5% recognition accuracy.Ope

    Deployment Strategies of Multiple Aerial BSs for User Coverage and Power Efficiency Maximization

    Get PDF
    Unmanned aerial vehicle (UAV) based aerial base stations (BSs) can provide rapid communication services to ground users and are thus promising for future communication systems. In this paper, we consider a scenario where no functional terrestrial BSs are available and the aim is deploying multiple aerial BSs to cover a maximum number of users within a certain target area. To this end, we first propose a naive successive deployment method, which converts the non-convex constraints in the involved optimization into a combination of linear constraints through geometrical relaxation. Then we investigate a deployment method based on K-means clustering. The method divides the target area into K convex subareas, where within each subarea, a mixed integer non-linear problem (MINLP) is solved. An iterative power efficient technique is further proposed to improve coverage probability with reduced power. Finally, we propose a robust technique for compensating the loss of coverage probability in the existence of inaccurate user location information (ULI). Our simulation results show that, the proposed techniques achieve an up to 30% higher coverage probability when users are not distributed uniformly. In addition, the proposed simultaneous deployment techniques, especially the one using iterative algorithm improve power-efficiency by up to 15% compared to the benchmark circle packing theory

    Queue-Aware Dynamic Clustering and Power Allocation for Network MIMO Systems via Distributive Stochastic Learning

    Full text link
    In this paper, we propose a two-timescale delay-optimal dynamic clustering and power allocation design for downlink network MIMO systems. The dynamic clustering control is adaptive to the global queue state information (GQSI) only and computed at the base station controller (BSC) over a longer time scale. On the other hand, the power allocations of all the BSs in one cluster are adaptive to both intra-cluster channel state information (CCSI) and intra-cluster queue state information (CQSI), and computed at the cluster manager (CM) over a shorter time scale. We show that the two-timescale delay-optimal control can be formulated as an infinite-horizon average cost Constrained Partially Observed Markov Decision Process (CPOMDP). By exploiting the special problem structure, we shall derive an equivalent Bellman equation in terms of Pattern Selection Q-factor to solve the CPOMDP. To address the distributive requirement and the issue of exponential memory requirement and computational complexity, we approximate the Pattern Selection Q-factor by the sum of Per-cluster Potential functions and propose a novel distributive online learning algorithm to estimate the Per-cluster Potential functions (at each CM) as well as the Lagrange multipliers (LM) (at each BS). We show that the proposed distributive online learning algorithm converges almost surely (with probability 1). By exploiting the birth-death structure of the queue dynamics, we further decompose the Per-cluster Potential function into sum of Per-cluster Per-user Potential functions and formulate the instantaneous power allocation as a Per-stage QSI-aware Interference Game played among all the CMs. We also propose a QSI-aware Simultaneous Iterative Water-filling Algorithm (QSIWFA) and show that it can achieve the Nash Equilibrium (NE)

    Simultaneous Dempster-Shafer clustering and gradual determination of number of clusters using a neural network structure

    Full text link
    In this paper we extend an earlier result within Dempster-Shafer theory ["Fast Dempster-Shafer Clustering Using a Neural Network Structure," in Proc. Seventh Int. Conf. Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU'98)] where several pieces of evidence were clustered into a fixed number of clusters using a neural structure. This was done by minimizing a metaconflict function. We now develop a method for simultaneous clustering and determination of number of clusters during iteration in the neural structure. We let the output signals of neurons represent the degree to which a pieces of evidence belong to a corresponding cluster. From these we derive a probability distribution regarding the number of clusters, which gradually during the iteration is transformed into a determination of number of clusters. This gradual determination is fed back into the neural structure at each iteration to influence the clustering process.Comment: 6 pages, 10 figure
    corecore