1,132,060 research outputs found

    Maximal Syntactic Complexity of Regular Languages Implies Maximal Quotient Complexities of Atoms

    Full text link
    We relate two measures of complexity of regular languages. The first is syntactic complexity, that is, the cardinality of the syntactic semigroup of the language. That semigroup is isomorphic to the semigroup of transformations of states induced by non-empty words in the minimal deterministic finite automaton accepting the language. If the language has n left quotients (its minimal automaton has n states), then its syntactic complexity is at most n^n and this bound is tight. The second measure consists of the quotient (state) complexities of the atoms of the language, where atoms are non-empty intersections of complemented and uncomplemented quotients. A regular language has at most 2^n atoms and this bound is tight. The maximal quotient complexity of any atom with r complemented quotients is 2^n-1, if r=0 or r=n, and 1+\sum_{k=1}^{r} \sum_{h=k+1}^{k+n-r} \binom{h}{n} \binom{k}{h}, otherwise. We prove that if a language has maximal syntactic complexity, then it has 2^n atoms and each atom has maximal quotient complexity, but the converse is false.Comment: 12 pages, 2 figures, 4 table

    Quotient Complexity of Regular Languages

    Full text link
    The past research on the state complexity of operations on regular languages is examined, and a new approach based on an old method (derivatives of regular expressions) is presented. Since state complexity is a property of a language, it is appropriate to define it in formal-language terms as the number of distinct quotients of the language, and to call it "quotient complexity". The problem of finding the quotient complexity of a language f(K,L) is considered, where K and L are regular languages and f is a regular operation, for example, union or concatenation. Since quotients can be represented by derivatives, one can find a formula for the typical quotient of f(K,L) in terms of the quotients of K and L. To obtain an upper bound on the number of quotients of f(K,L) all one has to do is count how many such quotients are possible, and this makes automaton constructions unnecessary. The advantages of this point of view are illustrated by many examples. Moreover, new general observations are presented to help in the estimation of the upper bounds on quotient complexity of regular operations
    • …
    corecore