5,208 research outputs found

    Adaptive Compressed Sensing for Support Recovery of Structured Sparse Sets

    Get PDF
    This paper investigates the problem of recovering the support of structured signals via adaptive compressive sensing. We examine several classes of structured support sets, and characterize the fundamental limits of accurately recovering such sets through compressive measurements, while simultaneously providing adaptive support recovery protocols that perform near optimally for these classes. We show that by adaptively designing the sensing matrix we can attain significant performance gains over non-adaptive protocols. These gains arise from the fact that adaptive sensing can: (i) better mitigate the effects of noise, and (ii) better capitalize on the structure of the support sets.Comment: to appear in IEEE Transactions on Information Theor

    Combinatorial specification of permutation classes

    Get PDF
    This article presents a methodology that automatically derives a combinatorial specification for the permutation class C = Av(B), given its basis B of excluded patterns and the set of simple permutations in C, when these sets are both finite. This is achieved considering both pattern avoidance and pattern containment constraints in permutations.The obtained specification yields a system of equations satisfied by the generating function of C, this system being always positiveand algebraic. It also yields a uniform random sampler of permutations in C. The method presentedis fully algorithmic

    Reachability analysis of first-order definable pushdown systems

    Get PDF
    We study pushdown systems where control states, stack alphabet, and transition relation, instead of being finite, are first-order definable in a fixed countably-infinite structure. We show that the reachability analysis can be addressed with the well-known saturation technique for the wide class of oligomorphic structures. Moreover, for the more restrictive homogeneous structures, we are able to give concrete complexity upper bounds. We show ample applicability of our technique by presenting several concrete examples of homogeneous structures, subsuming, with optimal complexity, known results from the literature. We show that infinitely many such examples of homogeneous structures can be obtained with the classical wreath product construction.Comment: to appear in CSL'1

    Hardness of submodular cost allocation : lattice matching and a simplex coloring conjecture

    Get PDF
    We consider the Minimum Submodular Cost Allocation (MSCA) problem. In this problem, we are given k submodular cost functions f1, ... , fk: 2V -> R+ and the goal is to partition V into k sets A1, ..., Ak so as to minimize the total cost sumi = 1,k fi(Ai). We show that MSCA is inapproximable within any multiplicative factor even in very restricted settings; prior to our work, only Set Cover hardness was known. In light of this negative result, we turn our attention to special cases of the problem. We consider the setting in which each function fi satisfies fi = gi + h, where each gi is monotone submodular and h is (possibly non-monotone) submodular. We give an O(k log |V|) approximation for this problem. We provide some evidence that a factor of k may be necessary, even in the special case of HyperLabel. In particular, we formulate a simplex-coloring conjecture that implies a Unique-Games-hardness of (k - 1 - epsilon) for k-uniform HyperLabel and label set [k]. We provide a proof of the simplex-coloring conjecture for k=3
    corecore