1,265 research outputs found

    Computational Complexity of the Minimum Cost Homomorphism Problem on Three-Element Domains

    Get PDF
    In this paper we study the computational complexity of the (extended) minimum cost homomorphism problem (Min-Cost-Hom) as a function of a constraint language, i.e. a set of constraint relations and cost functions that are allowed to appear in instances. A wide range of natural combinatorial optimisation problems can be expressed as Min-Cost-Homs and a classification of their complexity would be highly desirable, both from a direct, applied point of view as well as from a theoretical perspective. Min-Cost-Hom can be understood either as a flexible optimisation version of the constraint satisfaction problem (CSP) or a restriction of the (general-valued) valued constraint satisfaction problem (VCSP). Other optimisation versions of CSPs such as the minimum solution problem (Min-Sol) and the minimum ones problem (Min-Ones) are special cases of Min-Cost-Hom. The study of VCSPs has recently seen remarkable progress. A complete classification for the complexity of finite-valued languages on arbitrary finite domains has been obtained Thapper and Zivny [STOC'13]. However, understanding the complexity of languages that are not finite-valued appears to be more difficult. Min-Cost-Hom allows us to study problematic languages of this type without having to deal with with the full generality of the VCSP. A recent classification for the complexity of three-element Min-Sol, Uppman [ICALP'13], takes a step in this direction. In this paper we extend this result considerably by determining the complexity of three-element Min-Cost-Hom

    Necessary conditions for tractability of valued CSPs

    Full text link
    The connection between constraint languages and clone theory has been a fruitful line of research on the complexity of constraint satisfaction problems. In a recent result, Cohen et al. [SICOMP'13] have characterised a Galois connection between valued constraint languages and so-called weighted clones. In this paper, we study the structure of weighted clones. We extend the results of Creed and Zivny from [CP'11/SICOMP'13] on types of weightings necessarily contained in every nontrivial weighted clone. This result has immediate computational complexity consequences as it provides necessary conditions for tractability of weighted clones and thus valued constraint languages. We demonstrate that some of the necessary conditions are also sufficient for tractability, while others are provably not.Comment: To appear in SIAM Journal on Discrete Mathematics (SIDMA

    The complexity of finite-valued CSPs

    Full text link
    We study the computational complexity of exact minimisation of rational-valued discrete functions. Let Γ\Gamma be a set of rational-valued functions on a fixed finite domain; such a set is called a finite-valued constraint language. The valued constraint satisfaction problem, VCSP(Γ)\operatorname{VCSP}(\Gamma), is the problem of minimising a function given as a sum of functions from Γ\Gamma. We establish a dichotomy theorem with respect to exact solvability for all finite-valued constraint languages defined on domains of arbitrary finite size. We show that every constraint language Γ\Gamma either admits a binary symmetric fractional polymorphism in which case the basic linear programming relaxation solves any instance of VCSP(Γ)\operatorname{VCSP}(\Gamma) exactly, or Γ\Gamma satisfies a simple hardness condition that allows for a polynomial-time reduction from Max-Cut to VCSP(Γ)\operatorname{VCSP}(\Gamma)

    A Galois Connection for Weighted (Relational) Clones of Infinite Size

    Full text link
    A Galois connection between clones and relational clones on a fixed finite domain is one of the cornerstones of the so-called algebraic approach to the computational complexity of non-uniform Constraint Satisfaction Problems (CSPs). Cohen et al. established a Galois connection between finitely-generated weighted clones and finitely-generated weighted relational clones [SICOMP'13], and asked whether this connection holds in general. We answer this question in the affirmative for weighted (relational) clones with real weights and show that the complexity of the corresponding valued CSPs is preserved

    Toward a Dichotomy for Approximation of H-Coloring

    Get PDF
    Given two (di)graphs G, H and a cost function c:V(G) x V(H) -> Q_{>= 0} cup {+infty}, in the minimum cost homomorphism problem, MinHOM(H), we are interested in finding a homomorphism f:V(G)-> V(H) (a.k.a H-coloring) that minimizes sum limits_{v in V(G)}c(v,f(v)). The complexity of exact minimization of this problem is well understood [Pavol Hell and Arash Rafiey, 2012], and the class of digraphs H, for which the MinHOM(H) is polynomial time solvable is a small subset of all digraphs. In this paper, we consider the approximation of MinHOM within a constant factor. In terms of digraphs, MinHOM(H) is not approximable if H contains a digraph asteroidal triple (DAT). We take a major step toward a dichotomy classification of approximable cases. We give a dichotomy classification for approximating the MinHOM(H) when H is a graph (i.e. symmetric digraph). For digraphs, we provide constant factor approximation algorithms for two important classes of digraphs, namely bi-arc digraphs (digraphs with a conservative semi-lattice polymorphism or min-ordering), and k-arc digraphs (digraphs with an extended min-ordering). Specifically, we show that: - Dichotomy for Graphs: MinHOM(H) has a 2|V(H)|-approximation algorithm if graph H admits a conservative majority polymorphims (i.e. H is a bi-arc graph), otherwise, it is inapproximable; - MinHOM(H) has a |V(H)|^2-approximation algorithm if H is a bi-arc digraph; - MinHOM(H) has a |V(H)|^2-approximation algorithm if H is a k-arc digraph. In conclusion, we show the importance of these results and provide insights for achieving a dichotomy classification of approximable cases. Our constant factors depend on the size of H. However, the implementation of our algorithms provides a much better approximation ratio. It leaves open to investigate a classification of digraphs H, where MinHOM(H) admits a constant factor approximation algorithm that is independent of |V(H)|

    The power of linear programming for general-valued CSPs

    Full text link
    Let DD, called the domain, be a fixed finite set and let Γ\Gamma, called the valued constraint language, be a fixed set of functions of the form f:DmQ{}f:D^m\to\mathbb{Q}\cup\{\infty\}, where different functions might have different arity mm. We study the valued constraint satisfaction problem parametrised by Γ\Gamma, denoted by VCSP(Γ)(\Gamma). These are minimisation problems given by nn variables and the objective function given by a sum of functions from Γ\Gamma, each depending on a subset of the nn variables. Finite-valued constraint languages contain functions that take on only rational values and not infinite values. Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued constraint language Γ\Gamma, BLP is a decision procedure for Γ\Gamma if and only if Γ\Gamma admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ\Gamma, BLP is a decision procedure if and only if Γ\Gamma admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ\Gamma admits a symmetric fractional polymorphism of arity 2. Using these results, we obtain tractability of several novel classes of problems, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) kk-submodular on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: A full version of a FOCS'12 paper by the last two authors (arXiv:1204.1079) and an ICALP'13 paper by the first author (arXiv:1207.7213) to appear in SIAM Journal on Computing (SICOMP

    The power of Sherali-Adams relaxations for general-valued CSPs

    Full text link
    We give a precise algebraic characterisation of the power of Sherali-Adams relaxations for solvability of valued constraint satisfaction problems to optimality. The condition is that of bounded width which has already been shown to capture the power of local consistency methods for decision CSPs and the power of semidefinite programming for robust approximation of CSPs. Our characterisation has several algorithmic and complexity consequences. On the algorithmic side, we show that several novel and many known valued constraint languages are tractable via the third level of the Sherali-Adams relaxation. For the known languages, this is a significantly simpler algorithm than the previously obtained ones. On the complexity side, we obtain a dichotomy theorem for valued constraint languages that can express an injective unary function. This implies a simple proof of the dichotomy theorem for conservative valued constraint languages established by Kolmogorov and Zivny [JACM'13], and also a dichotomy theorem for the exact solvability of Minimum-Solution problems. These are generalisations of Minimum-Ones problems to arbitrary finite domains. Our result improves on several previous classifications by Khanna et al. [SICOMP'00], Jonsson et al. [SICOMP'08], and Uppman [ICALP'13].Comment: Full version of an ICALP'15 paper (arXiv:1502.05301

    Complexity Classifications for the Valued Constraint Satisfaction Problem

    Get PDF
    In a valued constraint satisfaction problem (VCSP), the goal is to find an assignment of values to variables that minimizes a given sum of functions. Each function in the sum depends on a subset of variables, takes values which are rational numbers or infinity, and is chosen from a fixed finite set of functions called a constraint language. We study how the computational complexity of this problem depends on the constraint language. We often consider the case where infinite values are disallowed, and refer to such constraint languages as being finite-valued. If we consider such finite-valued constraint languages, the case where we allow variables to take two values was classified by Cohen et al., who show that submodular functions essentially give rise to the only tractable case. Non-submodular functions can be used to express the NP-hard Max Cut problem. We consider the case where the variables can take three values, and identify a new infinite set of functions called skew bisubmodular functions which imply tractability. We prove that submodularity with respect to some total order and skew bisubmodularity give rise to the only tractable cases, and in all other cases Max Cut can be expressed. We also show that our characterisation of tractable cases is tight, that is, none of the conditions can be omitted. Thus, our results provide a new dichotomy theorem in constraint satisfaction research. We also negatively answer the question of whether multimorphisms can capture all necessary tractable constraint languages. We then study the VCSP as a homomorphism problem on digraphs. By adapting a proof designed for CSPs we show that each VCSP with a fixed finite constraint language is equivalent to one where the constraint language consists of one {0,infinity}-valued binary function (i.e. a digraph) and one finite-valued unary function. This latter problem is known as the Minimum Cost Homomorphism Problem for digraphs. We also show that our reduction preserves a number of useful algebraic properties of the constraint language. Finally, given a finite-valued constraint language, we consider the case where the variables of our VCSP are allowed to take four values. We prove that 1-defect chain multimorphisms, which are required in the four element dichotomy of Min CSP, are a special case of more general fractional polymorphisms we call {a,b}-1-defect fractional polymorphisms. We conclude with a conjecture for the four element case, and some interesting open problems which might lead to a tighter description of tractable finite-valued constraint languages on finite domains of any size
    corecore