1,777 research outputs found

    The Complexity of Surjective Homomorphism Problems -- a Survey

    Get PDF
    We survey known results about the complexity of surjective homomorphism problems, studied in the context of related problems in the literature such as list homomorphism, retraction and compaction. In comparison with these problems, surjective homomorphism problems seem to be harder to classify and we examine especially three concrete problems that have arisen from the literature, two of which remain of open complexity

    An Algebraic Preservation Theorem for Aleph-Zero Categorical Quantified Constraint Satisfaction

    Full text link
    We prove an algebraic preservation theorem for positive Horn definability in aleph-zero categorical structures. In particular, we define and study a construction which we call the periodic power of a structure, and define a periomorphism of a structure to be a homomorphism from the periodic power of the structure to the structure itself. Our preservation theorem states that, over an aleph-zero categorical structure, a relation is positive Horn definable if and only if it is preserved by all periomorphisms of the structure. We give applications of this theorem, including a new proof of the known complexity classification of quantified constraint satisfaction on equality templates

    Exact Algorithm for Graph Homomorphism and Locally Injective Graph Homomorphism

    Full text link
    For graphs GG and HH, a homomorphism from GG to HH is a function φ ⁣:V(G)V(H)\varphi \colon V(G) \to V(H), which maps vertices adjacent in GG to adjacent vertices of HH. A homomorphism is locally injective if no two vertices with a common neighbor are mapped to a single vertex in HH. Many cases of graph homomorphism and locally injective graph homomorphism are NP-complete, so there is little hope to design polynomial-time algorithms for them. In this paper we present an algorithm for graph homomorphism and locally injective homomorphism working in time O((b+2)V(G))\mathcal{O}^*((b + 2)^{|V(G)|}), where bb is the bandwidth of the complement of HH

    Topological Birkhoff

    Full text link
    One of the most fundamental mathematical contributions of Garrett Birkhoff is the HSP theorem, which implies that a finite algebra B satisfies all equations that hold in a finite algebra A of the same signature if and only if B is a homomorphic image of a subalgebra of a finite power of A. On the other hand, if A is infinite, then in general one needs to take an infinite power in order to obtain a representation of B in terms of A, even if B is finite. We show that by considering the natural topology on the functions of A and B in addition to the equations that hold between them, one can do with finite powers even for many interesting infinite algebras A. More precisely, we prove that if A and B are at most countable algebras which are oligomorphic, then the mapping which sends each function from A to the corresponding function in B preserves equations and is continuous if and only if B is a homomorphic image of a subalgebra of a finite power of A. Our result has the following consequences in model theory and in theoretical computer science: two \omega-categorical structures are primitive positive bi-interpretable if and only if their topological polymorphism clones are isomorphic. In particular, the complexity of the constraint satisfaction problem of an \omega-categorical structure only depends on its topological polymorphism clone.Comment: 21 page

    Approximation for Maximum Surjective Constraint Satisfaction Problems

    Full text link
    Maximum surjective constraint satisfaction problems (Max-Sur-CSPs) are computational problems where we are given a set of variables denoting values from a finite domain B and a set of constraints on the variables. A solution to such a problem is a surjective mapping from the set of variables to B such that the number of satisfied constraints is maximized. We study the approximation performance that can be acccchieved by algorithms for these problems, mainly by investigating their relation with Max-CSPs (which are the corresponding problems without the surjectivity requirement). Our work gives a complexity dichotomy for Max-Sur-CSP(B) between PTAS and APX-complete, under the assumption that there is a complexity dichotomy for Max-CSP(B) between PO and APX-complete, which has already been proved on the Boolean domain and 3-element domains

    Locally constrained homomorphisms on graphs of bounded treewidth and bounded degree.

    Get PDF
    A homomorphism from a graph G to a graph H is locally bijective, surjective, or injective if its restriction to the neighborhood of every vertex of G is bijective, surjective, or injective, respectively. We prove that the problems of testing whether a given graph G allows a homomorphism to a given graph H that is locally bijective, surjective, or injective, respectively, are NP-complete, even when G has pathwidth at most 5, 4 or 2, respectively, or when both G and H have maximum degree 3. We complement these hardness results by showing that the three problems are polynomial-time solvable if G has bounded treewidth and in addition G or H has bounded maximum degree

    Twisted Alexander polynomials and a partial order on the set of prime knots

    Full text link
    We give a survey of some recent papers by the authors and Masaaki Wada relating the twisted Alexander polynomial with a partial order on the set of prime knots. We also give examples and pose open problems.Comment: This is the version published by Geometry & Topology Monographs on 25 February 200

    Relations Between Graphs

    Full text link
    Given two graphs G and H, we ask under which conditions there is a relation R that generates the edges of H given the structure of graph G. This construction can be seen as a form of multihomomorphism. It generalizes surjective homomorphisms of graphs and naturally leads to notions of R-retractions, R-cores, and R-cocores of graphs. Both R-cores and R-cocores of graphs are unique up to isomorphism and can be computed in polynomial time.Comment: accepted by Ars Mathematica Contemporane
    corecore