211,474 research outputs found

    A Computable Measure of Algorithmic Probability by Finite Approximations with an Application to Integer Sequences

    Get PDF
    Given the widespread use of lossless compression algorithms to approximate algorithmic (Kolmogorov-Chaitin) complexity, and that lossless compression algorithms fall short at characterizing patterns other than statistical ones not different to entropy estimations, here we explore an alternative and complementary approach. We study formal properties of a Levin-inspired measure mm calculated from the output distribution of small Turing machines. We introduce and justify finite approximations mkm_k that have been used in some applications as an alternative to lossless compression algorithms for approximating algorithmic (Kolmogorov-Chaitin) complexity. We provide proofs of the relevant properties of both mm and mkm_k and compare them to Levin's Universal Distribution. We provide error estimations of mkm_k with respect to mm. Finally, we present an application to integer sequences from the Online Encyclopedia of Integer Sequences which suggests that our AP-based measures may characterize non-statistical patterns, and we report interesting correlations with textual, function and program description lengths of the said sequences.Comment: As accepted by the journal Complexity (Wiley/Hindawi

    Statistical Pruning for Near Maximum Likelihood Detection of MIMO Systems

    Get PDF
    We show a statistical pruning approach for maximum likelihood (ML) detection of multiple-input multiple-output (MIMO) systems. We present a general pruning strategy for sphere decoder (SD), which can also be applied to any tree search algorithms. Our pruning rules are effective especially for the case when SD has high complexity. Three specific pruning rules are given and discussed. From analyzing the union bound on the symbol error probability, we show that the diversity order of the deterministic pruning is only one by fixing the pruning probability. By choosing different pruning probability distribution functions, the statistical pruning can achieve arbitrary diversity orders and SNR gains. Our statistical pruning strategy thus achieves a flexible trade-off between complexity and performance

    Simplified Multiuser Detection for SCMA with Sum-Product Algorithm

    Full text link
    Sparse code multiple access (SCMA) is a novel non-orthogonal multiple access technique, which fully exploits the shaping gain of multi-dimensional codewords. However, the lack of simplified multiuser detection algorithm prevents further implementation due to the inherently high computation complexity. In this paper, general SCMA detector algorithms based on Sum-product algorithm are elaborated. Then two improved algorithms are proposed, which simplify the detection structure and curtail exponent operations quantitatively in logarithm domain. Furthermore, to analyze these detection algorithms fairly, we derive theoretical expression of the average mutual information (AMI) of SCMA (SCMA-AMI), and employ a statistical method to calculate SCMA-AMI based specific detection algorithm. Simulation results show that the performance is almost as well as the based message passing algorithm in terms of both BER and AMI while the complexity is significantly decreased, compared to the traditional Max-Log approximation method
    corecore