126 research outputs found

    Static allocation of computation to processors in multicomputers

    Get PDF

    Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

    Get PDF
    Memory-centric scheduling attempts to guarantee temporal predictability on commercial-off-the-shelf (COTS) multiprocessor systems to exploit their high performance for real-time applications. Several solutions proposed in the real-time literature have hardware requirements that are not easily satisfied by modern COTS platforms, like hardware support for strict memory partitioning or the presence of scratchpads. However, even without said hardware support, it is possible to design an efficient memory-centric scheduler. In this article, we design, implement, and analyze a memory-centric scheduler for deterministic memory management on COTS multiprocessor platforms without any hardware support. Our approach uses fixed-priority scheduling and proposes a global "memory preemption" scheme to boost real-time schedulability. The proposed scheduling protocol is implemented in the Jailhouse hypervisor and Erika real-time kernel. Measurements of the scheduler overhead demonstrate the applicability of the proposed approach, and schedulability experiments show a 20% gain in terms of schedulability when compared to contention-based and static fair-share approaches

    Improved Mixed-Integer Programming Models for Multiprocessor Scheduling with Communication Delays

    Get PDF
    We revise existing and introduce new mixed-integer programming models for the Multiprocessor Scheduling Problem with Communication Delays. At first, we show how to provably reduce the number of product variables necessary to explicitly linearize the so-called packing formulation that contains bilinear terms. Then, we reveal that the feasible region of almost all existing formulations contains redundant solutions and formulate new constraints in order to exclude these. At the same time, by exploiting further structural properties, the models are improved concerning their size, strength, and modeling complexity. The discussion of these improvements leads to new much more compact formulations which are then experimentally compared with each other and with other formulations from the literature. We set up a realistic scenario with a preprocessing of the task graphs, delivering the gained information equally to all the tested models and evaluate not only running times but also the obtained lower and upper bounds on the makespan objective for unsolved instances of a large scale benchmark set

    Real-Time Scheduling for Software Prototyping

    Get PDF
    This paper presents several real-time scheduling algorithms developed to support rapid prototyping of embedded systems using the Computer Aided Prototyping System (CAPS). The CAPS tools are based on the Prototyping System Description Language (PSDL), which is a high-level language designed specifically to support the conceptual modeling of real-time embedded systems. This paper describes the scheduling algorithms used in CAPS along with the associated timing constraint and hardware models, which include single and multi-processor configurations

    Task assignment in parallel processor systems

    Get PDF
    A generic object-oriented simulation platform is developed in order to conduct experiments on the performance of assignment schemes. The simulation platform, called Genesis, is generic in the sense that it can model the key parameters that describe a parallel system: the architecture, the program, the assignment scheme and the message routing strategy. Genesis uses as its basis a sound architectural representation scheme developed in the thesis. The thesis reports results from a number of experiments assessing the performance of assignment schemes using Genesis. The comparison results indicate that the new assignment scheme proposed in this thesis is a promising alternative to the work-greedy assignment schemes. The proposed scheme has a time-complexity less than those of the work-greedy schemes and achieves an average performance better than, or comparable to, those of the work-greedy schemes. To generate an assignment, some parameters describing the program model will be required. In many cases, accurate estimation of these parameters is hard. It is thought that inaccuracies in the estimation would lead to poor assignments. The thesis investigates this speculation and presents experimental evidence that shows such inaccuracies do not greatly affect the quality of the assignments

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation
    • …
    corecore