6,993 research outputs found

    Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals

    Get PDF
    Following the methods used by Derksen-Weyman in \cite{DW11} and Chindris in \cite{Chi08}, we use quiver theory to represent the generalized Littlewood-Richardson coefficients for the branching rule for the diagonal embedding of \gl(n) as the dimension of a weight space of semi-invariants. Using this, we prove their saturation and investigate when they are nonzero. We also show that for certain partitions the associated stretched polynomials satisfy the same conjectures as single Littlewood-Richardson coefficients. We then provide a polytopal description of this multiplicity and show that its positivity may be computed in strongly polynomial time. Finally, we remark that similar results hold for certain other generalized Littlewood-Richardson coefficients.Comment: 28 pages, comments welcom

    On the complete perturbative solution of one-matrix models

    Full text link
    We summarize the recent results about complete solvability of Hermitian and rectangular complex matrix models. Partition functions have very simple character expansions with coefficients made from dimensions of representation of the linear group GL(N)GL(N), and arbitrary correlators in the Gaussian phase are given by finite sums over Young diagrams of a given size, which involve also the well known characters of symmetric group. The previously known integrability and Virasoro constraints are simple corollaries, but no vice versa: complete solvability is a peculiar property of the matrix model (hypergeometric) τ\tau-functions, which is actually a combination of these two complementary requirements.Comment: 8 page

    Low-rank updates and a divide-and-conquer method for linear matrix equations

    Get PDF
    Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differential equations. In this work, we present and analyze a new algorithm, based on tensorized Krylov subspaces, for quickly updating the solution of such a matrix equation when its coefficients undergo low-rank changes. We demonstrate how our algorithm can be utilized to accelerate the Newton method for solving continuous-time algebraic Riccati equations. Our algorithm also forms the basis of a new divide-and-conquer approach for linear matrix equations with coefficients that feature hierarchical low-rank structure, such as HODLR, HSS, and banded matrices. Numerical experiments demonstrate the advantages of divide-and-conquer over existing approaches, in terms of computational time and memory consumption

    Fermionic Matrix Models

    Get PDF
    We review a class of matrix models whose degrees of freedom are matrices with anticommuting elements. We discuss the properties of the adjoint fermion one-, two- and gauge invariant D-dimensional matrix models at large-N and compare them with their bosonic counterparts which are the more familiar Hermitian matrix models. We derive and solve the complete sets of loop equations for the correlators of these models and use these equations to examine critical behaviour. The topological large-N expansions are also constructed and their relation to other aspects of modern string theory such as integrable hierarchies is discussed. We use these connections to discuss the applications of these matrix models to string theory and induced gauge theories. We argue that as such the fermionic matrix models may provide a novel generalization of the discretized random surface representation of quantum gravity in which the genus sum alternates and the sums over genera for correlators have better convergence properties than their Hermitian counterparts. We discuss the use of adjoint fermions instead of adjoint scalars to study induced gauge theories. We also discuss two classes of dimensionally reduced models, a fermionic vector model and a supersymmetric matrix model, and discuss their applications to the branched polymer phase of string theories in target space dimensions D>1 and also to the meander problem.Comment: 139 pages Latex (99 pages in landscape, two-column option); Section on Supersymmetric Matrix Models expanded, additional references include
    corecore