117,446 research outputs found

    An Efficient Multiway Mergesort for GPU Architectures

    Full text link
    Sorting is a primitive operation that is a building block for countless algorithms. As such, it is important to design sorting algorithms that approach peak performance on a range of hardware architectures. Graphics Processing Units (GPUs) are particularly attractive architectures as they provides massive parallelism and computing power. However, the intricacies of their compute and memory hierarchies make designing GPU-efficient algorithms challenging. In this work we present GPU Multiway Mergesort (MMS), a new GPU-efficient multiway mergesort algorithm. MMS employs a new partitioning technique that exposes the parallelism needed by modern GPU architectures. To the best of our knowledge, MMS is the first sorting algorithm for the GPU that is asymptotically optimal in terms of global memory accesses and that is completely free of shared memory bank conflicts. We realize an initial implementation of MMS, evaluate its performance on three modern GPU architectures, and compare it to competitive implementations available in state-of-the-art GPU libraries. Despite these implementations being highly optimized, MMS compares favorably, achieving performance improvements for most random inputs. Furthermore, unlike MMS, state-of-the-art algorithms are susceptible to bank conflicts. We find that for certain inputs that cause these algorithms to incur large numbers of bank conflicts, MMS can achieve up to a 37.6% speedup over its fastest competitor. Overall, even though its current implementation is not fully optimized, due to its efficient use of the memory hierarchy, MMS outperforms the fastest comparison-based sorting implementations available to date

    An Enhanced Multiway Sorting Network Based on n-Sorters

    Full text link
    Merging-based sorting networks are an important family of sorting networks. Most merge sorting networks are based on 2-way or multi-way merging algorithms using 2-sorters as basic building blocks. An alternative is to use n-sorters, instead of 2-sorters, as the basic building blocks so as to greatly reduce the number of sorters as well as the latency. Based on a modified Leighton's columnsort algorithm, an n-way merging algorithm, referred to as SS-Mk, that uses n-sorters as basic building blocks was proposed. In this work, we first propose a new multiway merging algorithm with n-sorters as basic building blocks that merges n sorted lists of m values each in 1 + ceil(m/2) stages (n <= m). Based on our merging algorithm, we also propose a sorting algorithm, which requires O(N log2 N) basic sorters to sort N inputs. While the asymptotic complexity (in terms of the required number of sorters) of our sorting algorithm is the same as the SS-Mk, for wide ranges of N, our algorithm requires fewer sorters than the SS-Mk. Finally, we consider a binary sorting network, where the basic sorter is implemented in threshold logic and scales linearly with the number of inputs, and compare the complexity in terms of the required number of gates. For wide ranges of N, our algorithm requires fewer gates than the SS-Mk.Comment: 13 pages, 14 figure

    Fast Multi-Scale Community Detection based on Local Criteria within a Multi-Threaded Algorithm

    Full text link
    Many systems can be described using graphs, or networks. Detecting communities in these networks can provide information about the underlying structure and functioning of the original systems. Yet this detection is a complex task and a large amount of work was dedicated to it in the past decade. One important feature is that communities can be found at several scales, or levels of resolution, indicating several levels of organisations. Therefore solutions to the community structure may not be unique. Also networks tend to be large and hence require efficient processing. In this work, we present a new algorithm for the fast detection of communities across scales using a local criterion. We exploit the local aspect of the criterion to enable parallel computation and improve the algorithm's efficiency further. The algorithm is tested against large generated multi-scale networks and experiments demonstrate its efficiency and accuracy.Comment: arXiv admin note: text overlap with arXiv:1204.100
    • …
    corecore