452 research outputs found

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    A Mobile Ambients-based Approach for Network Attack Modelling and Simulation

    Get PDF
    Attack Graphs are an important support for assessment and subsequent improvement of network security. They reveal possible paths an attacker can take to break through security perimeters and traverse a network to reach valuable assets deep inside the network. Although scalability is no longer the main issue, Attack Graphs still have some problems that make them less useful in practice. First, Attack Graphs remain difficult to relate to the network topology. Second, Attack Graphs traditionally only consider the exploitation of vulnerable hosts. Third, Attack Graphs do not rely on automatic identification of potential attack targets. We address these gaps in our MsAMS (Multi-step Attack Modelling and Simulation) tool, based on Mobile Ambients. The tool not only allows the modelling of more static aspects of the network, such as the network topology, but also the dynamics of network attacks. In addition to Mobile Ambients, we use the PageRank algorithm to determine targets and hub scores produced by the HITS (Hypertext Induced Topic Search) algorithm to guide the simulation of an attacker searching for targets

    A Mobile Ambients-based Approach for Network Attack Modelling and Simulation

    Get PDF
    Attack Graphs are an important support for assessment and subsequent improvement of network security. They reveal possible paths an attacker can take to break through security perimeters and traverse a network to reach valuable assets deep inside the network. Although scalability is no longer the main issue, Attack Graphs still have some problems that make them less useful in practice. First, Attack Graphs remain difficult to relate to the network topology. Second, Attack Graphs traditionally only consider the exploitation of vulnerable hosts. Third, Attack Graphs do not rely on automatic identification of potential attack targets. We address these gaps in our MsAMS (Multi-step Attack Modelling and Simulation) tool, based on Mobile Ambients. The tool not only allows the modelling of more static aspects of the network, such as the network topology, but also the dynamics of network attacks. In addition to Mobile Ambients, we use the PageRank algorithm to determine targets and hub scores produced by the HITS (Hypertext Induced Topic Search) algorithm to guide the simulation of an attacker searching for targets

    Types for BioAmbients

    Get PDF
    The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues). Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour

    A model checking-based approach for security policy verification of mobile systems

    Full text link
    International audienceThis article describes an approach for the automated verification of mobile systems. Mobile systems are characterized by the explicit notion of (e.g., sites where they run) and the ability to execute at different locations, yielding a number of security issues. To this aim, we formalize mobile systems as Labeled Kripke Structures, encapsulating the notion of that describes the hierarchical nesting of the threads constituting the system. Then, we formalize a generic that includes rules for expressing and manipulating the code location. In contrast to many other approaches, our technique supports both access control and information flow specification. We developed a prototype framework for model checking of mobile systems. It works directly on the program code (in contrast to most traditional process-algebraic approaches that can model only limited details of mobile systems) and uses abstraction-refinement techniques, based also on location abstractions, to manage the program state space. We experimented with a number of mobile code benchmarks by verifying various security policies. The experimental results demonstrate the validity of the proposed mobile system modeling and policy specification formalisms and highlight the advantages of the model checking-based approach, which combines the validation of security properties with other checks, such as the validation of buffer overflows

    An Analysis Tool for Models of Virtualized Systems

    Get PDF
    This paper gives an example-driven introduction to modelling and analyzing virtualized systems in, e.g., cloud computing, using virtually timed ambients, a process algebra developed to study timing aspects of resource management for (nested) virtual machines. The calculus supports nested virtualization and virtual machines compete with other processes for the resources of their host environment. Resource provisioning in virtually timed ambients extends the capabilities of mobile ambients to model the dynamic creation, migration, and destruction of virtual machines. Quality of service properties for virtually timed ambients can be formally expressed using modal contracts describing aspects of resource provisioning and verified using a model checker for virtually timed ambients, implemented in the rewriting system Maude

    Control Flow Analysis for BioAmbients

    Get PDF
    AbstractThis paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We eventually apply our analysis to an example of gene regulation by positive feedback taken from the literature

    Engineering topology aware adaptive security: preventing requirements violations at runtime

    Get PDF
    Adaptive security systems aim to protect critical assets in the face of changes in their operational environment. We have argued that incorporating an explicit representation of the environment’s topology enables reasoning on the location of assets being protected and the proximity of potentially harmful agents. This paper proposes to engineer topology aware adaptive security systems by identifying violations of security requirementsthat may be caused by topological changes, and selecting a setof security controls that prevent such violations. Our approach focuses on physical topologies; it maintains at runtime a live representation of the topology which is updated when assets or agents move, or when the structure of the physical space is altered. When the topology changes, we look ahead at a subset of the future system states. These states are reachable when the agents move within the physical space. If security requirements can be violated in future system states, a configuration of security controls is proactively applied to prevent the system from reaching those states. Thus, the system continuously adapts to topological stimuli, while maintaining requirements satisfaction. Security requirements are formally expressed using a propositional temporal logic, encoding spatial properties in Computation Tree Logic (CTL). The Ambient Calculus is used to represent the topology of the operational environment - including location of assets and agents - as well as to identify future system states that are reachable from the current one. The approach is demonstrated and evaluated using a substantive example concerned with physical access control
    • …
    corecore