10,395 research outputs found

    Parameterized Complexity of Graph Constraint Logic

    Get PDF
    Graph constraint logic is a framework introduced by Hearn and Demaine, which provides several problems that are often a convenient starting point for reductions. We study the parameterized complexity of Constraint Graph Satisfiability and both bounded and unbounded versions of Nondeterministic Constraint Logic (NCL) with respect to solution length, treewidth and maximum degree of the underlying constraint graph as parameters. As a main result we show that restricted NCL remains PSPACE-complete on graphs of bounded bandwidth, strengthening Hearn and Demaine's framework. This allows us to improve upon existing results obtained by reduction from NCL. We show that reconfiguration versions of several classical graph problems (including independent set, feedback vertex set and dominating set) are PSPACE-complete on planar graphs of bounded bandwidth and that Rush Hour, generalized to k×nk\times n boards, is PSPACE-complete even when kk is at most a constant

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    Shortest Reconfiguration of Sliding Tokens on a Caterpillar

    Get PDF
    Suppose that we are given two independent sets I_b and I_r of a graph such that |I_b|=|I_r|, and imagine that a token is placed on each vertex in |I_b|. Then, the sliding token problem is to determine whether there exists a sequence of independent sets which transforms I_b into I_r so that each independent set in the sequence results from the previous one by sliding exactly one token along an edge in the graph. The sliding token problem is one of the reconfiguration problems that attract the attention from the viewpoint of theoretical computer science. The reconfiguration problems tend to be PSPACE-complete in general, and some polynomial time algorithms are shown in restricted cases. Recently, the problems that aim at finding a shortest reconfiguration sequence are investigated. For the 3SAT problem, a trichotomy for the complexity of finding the shortest sequence has been shown, that is, it is in P, NP-complete, or PSPACE-complete in certain conditions. In general, even if it is polynomial time solvable to decide whether two instances are reconfigured with each other, it can be NP-complete to find a shortest sequence between them. Namely, finding a shortest sequence between two independent sets can be more difficult than the decision problem of reconfigurability between them. In this paper, we show that the problem for finding a shortest sequence between two independent sets is polynomial time solvable for some graph classes which are subclasses of the class of interval graphs. More precisely, we can find a shortest sequence between two independent sets on a graph G in polynomial time if either G is a proper interval graph, a trivially perfect graph, or a caterpillar. As far as the authors know, this is the first polynomial time algorithm for the shortest sliding token problem for a graph class that requires detours

    A Dichotomy Theorem for Circular Colouring Reconfiguration

    Get PDF
    The "reconfiguration problem" for circular colourings asks, given two (p,q)(p,q)-colourings ff and gg of a graph GG, is it possible to transform ff into gg by changing the colour of one vertex at a time such that every intermediate mapping is a (p,q)(p,q)-colouring? We show that this problem can be solved in polynomial time for 2≤p/q<42\leq p/q <4 and is PSPACE-complete for p/q≥4p/q\geq 4. This generalizes a known dichotomy theorem for reconfiguring classical graph colourings.Comment: 22 pages, 5 figure

    The complexity of dominating set reconfiguration

    Full text link
    Suppose that we are given two dominating sets DsD_s and DtD_t of a graph GG whose cardinalities are at most a given threshold kk. Then, we are asked whether there exists a sequence of dominating sets of GG between DsD_s and DtD_t such that each dominating set in the sequence is of cardinality at most kk and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is known to be PSPACE-complete in general. In this paper, we study the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem remains PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs, and bipartite graphs. We then give a general scheme to construct linear-time algorithms and show that the problem can be solved in linear time for cographs, trees, and interval graphs. Furthermore, for these tractable cases, we can obtain a desired sequence such that the number of additions and deletions is bounded by O(n)O(n), where nn is the number of vertices in the input graph
    • …
    corecore