5,162 research outputs found

    Single-Elimination Brackets Fail to Approximate Copeland Winner

    Get PDF
    Single-elimination (SE) brackets appear commonly in both sports tournaments and the voting theory literature. In certain tournament models, they have been shown to select the unambiguously-strongest competitor with optimum probability. By contrast, we reevaluate SE brackets through the lens of approximation, where the goal is to select a winner who would beat the most other competitors in a round robin (i.e., maximize the Copeland score), and find them lacking. Our primary result establishes the approximation ratio of a randomly-seeded SE bracket is 2^{- Theta(sqrt{log n})}; this is underwhelming considering a 1/2 ratio is achieved by choosing a winner uniformly at random. We also establish that a generalized version of the SE bracket performs nearly as poorly, with an approximation ratio of 2^{- Omega(sqrt[4]{log n})}, addressing a decade-old open question in the voting tree literature

    Oriented coloring on recursively defined digraphs

    Full text link
    Coloring is one of the most famous problems in graph theory. The coloring problem on undirected graphs has been well studied, whereas there are very few results for coloring problems on directed graphs. An oriented k-coloring of an oriented graph G=(V,A) is a partition of the vertex set V into k independent sets such that all the arcs linking two of these subsets have the same direction. The oriented chromatic number of an oriented graph G is the smallest k such that G allows an oriented k-coloring. Deciding whether an acyclic digraph allows an oriented 4-coloring is NP-hard. It follows, that finding the chromatic number of an oriented graph is an NP-hard problem. This motivates to consider the problem on oriented co-graphs. After giving several characterizations for this graph class, we show a linear time algorithm which computes an optimal oriented coloring for an oriented co-graph. We further prove how the oriented chromatic number can be computed for the disjoint union and order composition from the oriented chromatic number of the involved oriented co-graphs. It turns out that within oriented co-graphs the oriented chromatic number is equal to the length of a longest oriented path plus one. We also show that the graph isomorphism problem on oriented co-graphs can be solved in linear time.Comment: 14 page

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Tournament Sequences and Meeussen Sequences

    Get PDF
    A "tournament sequence" is an increasing sequence of positive integers (t_1,t_2,...) such that t_1=1 and t_{i+1} <= 2 t_i. A "Meeussen sequence" is an increasing sequence of positive integers (m_1,m_2,...) such that m_1=1, every nonnegative integer is the sum of a subset of the {m_i}, and each integer m_i-1 is the sum of a unique such subset. We show that these two properties are isomorphic. That is, we present a bijection between tournament and Meeussen sequences which respects the natural tree structure on each set. We also present an efficient technique for counting the number of tournament sequences of length n, and discuss the asymptotic growth of this number. The counting technique we introduce is suitable for application to other well-behaved counting problems of the same sort where a closed form or generating function cannot be found.Comment: 16 pages, 1 figure. Minor changes only; final version as published in EJ

    Manipulating Tournaments in Cup and Round Robin Competitions

    Full text link
    In sports competitions, teams can manipulate the result by, for instance, throwing games. We show that we can decide how to manipulate round robin and cup competitions, two of the most popular types of sporting competitions in polynomial time. In addition, we show that finding the minimal number of games that need to be thrown to manipulate the result can also be determined in polynomial time. Finally, we show that there are several different variations of standard cup competitions where manipulation remains polynomial.Comment: Proceedings of Algorithmic Decision Theory, First International Conference, ADT 2009, Venice, Italy, October 20-23, 200

    Uniqueness, intractability and exact algorithms: reflections on level-k phylogenetic networks

    Get PDF
    Phylogenetic networks provide a way to describe and visualize evolutionary histories that have undergone so-called reticulate evolutionary events such as recombination, hybridization or horizontal gene transfer. The level k of a network determines how non-treelike the evolution can be, with level-0 networks being trees. We study the problem of constructing level-k phylogenetic networks from triplets, i.e. phylogenetic trees for three leaves (taxa). We give, for each k, a level-k network that is uniquely defined by its triplets. We demonstrate the applicability of this result by using it to prove that (1) for all k of at least one it is NP-hard to construct a level-k network consistent with all input triplets, and (2) for all k it is NP-hard to construct a level-k network consistent with a maximum number of input triplets, even when the input is dense. As a response to this intractability we give an exact algorithm for constructing level-1 networks consistent with a maximum number of input triplets
    • …
    corecore