118,896 research outputs found

    Impartial coloring games

    Full text link
    Coloring games are combinatorial games where the players alternate painting uncolored vertices of a graph one of k>0k > 0 colors. Each different ruleset specifies that game's coloring constraints. This paper investigates six impartial rulesets (five new), derived from previously-studied graph coloring schemes, including proper map coloring, oriented coloring, 2-distance coloring, weak coloring, and sequential coloring. For each, we study the outcome classes for special cases and general computational complexity. In some cases we pay special attention to the Grundy function

    The maximum disjoint paths problem on multi-relations social networks

    Get PDF
    Motivated by applications to social network analysis (SNA), we study the problem of finding the maximum number of disjoint uni-color paths in an edge-colored graph. We show the NP-hardness and the approximability of the problem, and both approximation and exact algorithms are proposed. Since short paths are much more significant in SNA, we also study the length-bounded version of the problem, in which the lengths of paths are required to be upper bounded by a fixed integer ll. It is shown that the problem can be solved in polynomial time for l=3l=3 and is NP-hard for l≥4l\geq 4. We also show that the problem can be approximated with ratio (l−1)/2+ϵ(l-1)/2+\epsilon in polynomial time for any ϵ>0\epsilon >0. Particularly, for l=4l=4, we develop an efficient 2-approximation algorithm

    Parametric LTL on Markov Chains

    Full text link
    This paper is concerned with the verification of finite Markov chains against parametrized LTL (pLTL) formulas. In pLTL, the until-modality is equipped with a bound that contains variables; e.g., ◊≤x φ\Diamond_{\le x}\ \varphi asserts that φ\varphi holds within xx time steps, where xx is a variable on natural numbers. The central problem studied in this paper is to determine the set of parameter valuations V≺p(φ)V_{\prec p} (\varphi) for which the probability to satisfy pLTL-formula φ\varphi in a Markov chain meets a given threshold ≺p\prec p, where ≺\prec is a comparison on reals and pp a probability. As for pLTL determining the emptiness of V>0(φ)V_{> 0}(\varphi) is undecidable, we consider several logic fragments. We consider parametric reachability properties, a sub-logic of pLTL restricted to next and ◊≤x\Diamond_{\le x}, parametric B\"uchi properties and finally, a maximal subclass of pLTL for which emptiness of V>0(φ)V_{> 0}(\varphi) is decidable.Comment: TCS Track B 201

    Looking at Mean-Payoff through Foggy Windows

    Full text link
    Mean-payoff games (MPGs) are infinite duration two-player zero-sum games played on weighted graphs. Under the hypothesis of perfect information, they admit memoryless optimal strategies for both players and can be solved in NP-intersect-coNP. MPGs are suitable quantitative models for open reactive systems. However, in this context the assumption of perfect information is not always realistic. For the partial-observation case, the problem that asks if the first player has an observation-based winning strategy that enforces a given threshold on the mean-payoff, is undecidable. In this paper, we study the window mean-payoff objectives that were introduced recently as an alternative to the classical mean-payoff objectives. We show that, in sharp contrast to the classical mean-payoff objectives, some of the window mean-payoff objectives are decidable in games with partial-observation
    • …
    corecore