4,977 research outputs found

    32nd International Symposium on Theoretical Aspects of Computer Science: STACS '15, March 4 - 7, 2015, Garching, Germany

    Get PDF

    Mesoscale Light-matter Interactions

    Get PDF
    Mesoscale optical phenomena occur when light interacts with a number of different types of materials, such as biological and chemical systems and fabricated nanostructures. As a framework, mesoscale optics unifies the interpretations of the interaction of light with complex media when the outcome depends significantly upon the scale of the interaction. Most importantly, it guides the process of designing an optical sensing technique by focusing on the nature and amount of information that can be extracted from a measurement. Different aspects of mesoscale optics are addressed in this dissertation which led to the solution of a number of problems in complex media. Dynamical and structural information from complex fluids—such as colloidal suspensions and biological fluids—was obtained by controlling the size of the interaction volume with low coherence interferometry. With this information, material properties such as particle sizes, optical transport coefficients, and viscoelastic characteristics of polymer solutions and blood were determined in natural, realistic conditions that are inaccessible to conventional techniques. The same framework also enabled the development of new, scale-dependent models for several important physical and biological systems. These models were then used to explain the results of some unique measurements. For example, the transport of light in disordered photonic lattices was interpreted as a scale-dependent, diffusive process to explain the anomalous behavior of photon path length distributions through these complex structures. In addition, it was demonstrated how specialized optical measurements and models at the mesoscale enable solutions to fundamental problems in cell biology. Specifically, it was found for the first time that the nature of cell motility changes markedly with the curvature of the substrate that the cells iv move on. This particular work addresses increasingly important questions concerning the nature of cellular responses to external forces and the mechanical properties of their local environment. Besides sensing of properties and modeling behaviors of complex systems, mesoscale optics encompasses the control of material systems as a result of the light-matter interaction. Specific modifications to a material’s structure can occur due to not only an exchange of energy between radiation and a material, but also due to a transfer of momentum. Based on the mechanical action of multiply scattered light on colloidal particles, an optically-controlled active medium that did not require specially tailored particles was demonstrated for the first time. The coupling between the particles and the random electromagnetic field affords new possibilities for controlling mesoscale systems and observing nonequilibrium thermodynamic phenomena

    Wastewater minimization in multipurpose batch processes using mathematical modelling

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in fulfillment of the requirements for the degree of Master of Science in Engineering May 2018The increase in the degradation of water sources and stringent environmental regulations have greatly motivated industries to explore means of utilizing water efficiently. Batch processes are known to generate highly contaminated wastewater that is toxic to the environment. A holistic approach to design which emphasizes the unity of the process, process integration (PI), can be used to reduce both the wastewater generated and the level of contamination while maintaining the profitability of the chemical plant. Process integration techniques for wastewater minimization in batch processes include water reuse, recycle and regeneration. Most mathematical formulations for wastewater minimization in multipurpose batch processes presented in literature determine the amount of water required for washing operations by only looking at the task that has just occurred in a unit. However, the nature of the succeeding task can influence the amount of water required for the washing operation between consecutive tasks in a processing unit. In paint manufacturing, for example, more water will be required for the washing operation if the production of white paint follows the production of black paint and less water will be required if the black paint follows the white paint. The amount of wastewater generated in batch processes can, therefore, be reduced by simply synthesizing a sequence of tasks that will generate the least amount of wastewater. Presented in this work are wastewater minimization formulations for multipurpose batch processes which explore sequence dependent changeover opportunities for water minimization simultaneously with direct and indirect water reuse and recycle opportunities. The presence of continuous and integer variables, as well as bilinear terms, rendered the model a Mixed Integer Nonlinear Program (MINLP). The developed MINLP model was validated using two single contaminant illustrative examples and a multiple contaminant example. A global optimization solver, Branch and Reduce Optimization Navigator (BARON), was used to solve the optimization problems on a General Algebraic Modeling System (GAMS) platform. Exploring multiple water saving opportunities simultaneously has proven to be computationally intensive but can result in significant water savings. For instance, two different scenarios saved 65% and 61% in freshwater use respectively.MT 201

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Remedy for Now but Prohibit for Tomorrow: The Deterrence Effects of Merger Policy Tools

    Get PDF
    Antitrust policy involves not just the regulation of anti-competitive behavior, but also an important deterrence effect. Neither scholars nor policymakers have fully researched the deterrence effects of merger policy tools, as they have been unable to empirically measure these effects. We consider the ability of different antitrust actions – Prohibitions, Remedies, and Monitorings – to deter firms from engaging in mergers. We employ cross-jurisdiction/pan-time data on merger policy to empirically estimate the impact of antitrust actions on future merger frequencies. We find merger prohibitions to lead to decreased merger notifications in subsequent periods, and remedies to weakly increase future merger notifications: in other words, prohibitions involve a deterrence effect but remedies do not

    Theory of Sampling Contribution to Multivariate Image Analysis

    Get PDF
    • 

    corecore