825 research outputs found

    Checking Dynamic Consistency of Conditional Hyper Temporal Networks via Mean Payoff Games (Hardness and (pseudo) Singly-Exponential Time Algorithm)

    Full text link
    In this work we introduce the \emph{Conditional Hyper Temporal Network (CHyTN)} model, which is a natural extension and generalization of both the \CSTN and the \HTN model. Our contribution goes as follows. We show that deciding whether a given \CSTN or CHyTN is dynamically consistent is \coNP-hard. Then, we offer a proof that deciding whether a given CHyTN is dynamically consistent is \PSPACE-hard, provided that the input instances are allowed to include both multi-head and multi-tail hyperarcs. In light of this, we continue our study by focusing on CHyTNs that allow only multi-head or only multi-tail hyperarcs, and we offer the first deterministic (pseudo) singly-exponential time algorithm for the problem of checking the dynamic-consistency of such CHyTNs, also producing a dynamic execution strategy whenever the input CHyTN is dynamically consistent. Since \CSTN{s} are a special case of CHyTNs, this provides as a byproduct the first sound-and-complete (pseudo) singly-exponential time algorithm for checking dynamic-consistency in CSTNs. The proposed algorithm is based on a novel connection between CSTN{s}/CHyTN{s} and Mean Payoff Games. The presentation of the connection between \CSTN{s}/CHyTNs and \MPG{s} is mediated by the \HTN model. In order to analyze the algorithm, we introduce a refined notion of dynamic-consistency, named ϵ\epsilon-dynamic-consistency, and present a sharp lower bounding analysis on the critical value of the reaction time ε^\hat{\varepsilon} where a \CSTN/CHyTN transits from being, to not being, dynamically consistent. The proof technique introduced in this analysis of ε^\hat{\varepsilon} is applicable more generally when dealing with linear difference constraints which include strict inequalities.Comment: arXiv admin note: text overlap with arXiv:1505.0082

    On the frontiers of polynomial computations in tropical geometry

    Full text link
    We study some basic algorithmic problems concerning the intersection of tropical hypersurfaces in general dimension: deciding whether this intersection is nonempty, whether it is a tropical variety, and whether it is connected, as well as counting the number of connected components. We characterize the borderline between tractable and hard computations by proving NP\mathcal{NP}-hardness and #P\mathcal{P}-hardness results under various strong restrictions of the input data, as well as providing polynomial time algorithms for various other restrictions.Comment: 17 pages, 5 figures. To appear in Journal of Symbolic Computatio

    Recent advances in real geometric reasoning

    Get PDF
    In the 1930s Tarski showed that real quantifier elimination was possible, and in 1975 Collins gave a remotely practicable method, albeit with doubly-exponential complexity, which was later shown to be inherent. We discuss some of the recent major advances in Collins method: such as an alternative approach based on passing via the complexes, and advances which come closer to "solving the question asked" rather than "solving all problems to do with these polynomials"

    Efficient algorithms for tensor scaling, quantum marginals and moment polytopes

    Full text link
    We present a polynomial time algorithm to approximately scale tensors of any format to arbitrary prescribed marginals (whenever possible). This unifies and generalizes a sequence of past works on matrix, operator and tensor scaling. Our algorithm provides an efficient weak membership oracle for the associated moment polytopes, an important family of implicitly-defined convex polytopes with exponentially many facets and a wide range of applications. These include the entanglement polytopes from quantum information theory (in particular, we obtain an efficient solution to the notorious one-body quantum marginal problem) and the Kronecker polytopes from representation theory (which capture the asymptotic support of Kronecker coefficients). Our algorithm can be applied to succinct descriptions of the input tensor whenever the marginals can be efficiently computed, as in the important case of matrix product states or tensor-train decompositions, widely used in computational physics and numerical mathematics. We strengthen and generalize the alternating minimization approach of previous papers by introducing the theory of highest weight vectors from representation theory into the numerical optimization framework. We show that highest weight vectors are natural potential functions for scaling algorithms and prove new bounds on their evaluations to obtain polynomial-time convergence. Our techniques are general and we believe that they will be instrumental to obtain efficient algorithms for moment polytopes beyond the ones consider here, and more broadly, for other optimization problems possessing natural symmetries

    Constraint Satisfaction Problems over Numeric Domains

    Get PDF
    We present a survey of complexity results for constraint satisfaction problems (CSPs) over the integers, the rationals, the reals, and the complex numbers. Examples of such problems are feasibility of linear programs, integer linear programming, the max-atoms problem, Hilbert\u27s tenth problem, and many more. Our particular focus is to identify those CSPs that can be solved in polynomial time, and to distinguish them from CSPs that are NP-hard. A very helpful tool for obtaining complexity classifications in this context is the concept of a polymorphism from universal algebra
    • …
    corecore