2,424 research outputs found

    Recognizing graphs of acyclic cubical complexes

    Get PDF
    AbstractAcyclic cubical complexes have first been introduced by Bandelt and Chepoi in analogy to acyclic simplicial complexes. They characterized them by cube contraction and elimination schemes and showed that the graphs of acyclic cubical complexes are retracts of cubes characterized by certain forbidden convex subgraphs. In this paper we present an algorithm of time complexity O(mlogn) which recognizes whether a given graph G on n vertices with m edges is the graph of an acyclic cubical complex. This is significantly better than the complexity O(mn) of the fastest currently known algorithm for recognizing retracts of cubes in general

    Hierarchically hyperbolic spaces I: curve complexes for cubical groups

    Get PDF
    In the context of CAT(0) cubical groups, we develop an analogue of the theory of curve complexes and subsurface projections. The role of the subsurfaces is played by a collection of convex subcomplexes called a \emph{factor system}, and the role of the curve graph is played by the \emph{contact graph}. There are a number of close parallels between the contact graph and the curve graph, including hyperbolicity, acylindricity of the action, the existence of hierarchy paths, and a Masur--Minsky-style distance formula. We then define a \emph{hierarchically hyperbolic space}; the class of such spaces includes a wide class of cubical groups (including all virtually compact special groups) as well as mapping class groups and Teichm\"{u}ller space with any of the standard metrics. We deduce a number of results about these spaces, all of which are new for cubical or mapping class groups, and most of which are new for both. We show that the quasi-Lipschitz image from a ball in a nilpotent Lie group into a hierarchically hyperbolic space lies close to a product of hierarchy geodesics. We also prove a rank theorem for hierarchically hyperbolic spaces; this generalizes results of Behrstock--Minsky, Eskin--Masur--Rafi, Hamenst\"{a}dt, and Kleiner. We finally prove that each hierarchically hyperbolic group admits an acylindrical action on a hyperbolic space. This acylindricity result is new for cubical groups, in which case the hyperbolic space admitting the action is the contact graph; in the case of the mapping class group, this provides a new proof of a theorem of Bowditch.Comment: To appear in "Geometry and Topology". This version incorporates the referee's comment

    Homological Region Adjacency Tree for a 3D Binary Digital Image via HSF Model

    Get PDF
    Given a 3D binary digital image I, we define and compute an edge-weighted tree, called Homological Region Tree (or Hom-Tree, for short). It coincides, as unweighted graph, with the classical Region Adjacency Tree of black 6-connected components (CCs) and white 26- connected components of I. In addition, we define the weight of an edge (R, S) as the number of tunnels that the CCs R and S “share”. The Hom-Tree structure is still an isotopic invariant of I. Thus, it provides information about how the different homology groups interact between them, while preserving the duality of black and white CCs. An experimentation with a set of synthetic images showing different shapes and different complexity of connected component nesting is performed for numerically validating the method.Ministerio de Economía y Competitividad MTM2016-81030-

    Acylindrical hyperbolicity of cubical small-cancellation groups

    Full text link
    We provide an analogue of Strebel's classification of geodesic triangles in classical C(16)C'(\frac16) groups for groups given by Wise's cubical presentations satisfying sufficiently strong metric cubical small cancellation conditions. Using our classification, we prove that, except in specific degenerate cases, such groups are acylindrically hyperbolic.Comment: Added figures. Exposition improved in Section 3, correction/simplification in Section 5, background added and citations updated in Section

    A Geometric Approach to the Problem of Unique Decomposition of Processes

    Full text link
    This paper proposes a geometric solution to the problem of prime decomposability of concurrent processes first explored by R. Milner and F. Moller in [MM93]. Concurrent programs are given a geometric semantics using cubical areas, for which a unique factorization theorem is proved. An effective factorization method which is correct and complete with respect to the geometric semantics is derived from the factorization theorem. This algorithm is implemented in the static analyzer ALCOOL.Comment: 15 page
    corecore