535,853 research outputs found

    The Complexity of Partial Function Extension for Coverage Functions

    Get PDF
    Coverage functions are an important subclass of submodular functions, finding applications in machine learning, game theory, social networks, and facility location. We study the complexity of partial function extension to coverage functions. That is, given a partial function consisting of a family of subsets of [m] and a value at each point, does there exist a coverage function defined on all subsets of [m] that extends this partial function? Partial function extension is previously studied for other function classes, including boolean functions and convex functions, and is useful in many fields, such as obtaining bounds on learning these function classes. We show that determining extendibility of a partial function to a coverage function is NP-complete, establishing in the process that there is a polynomial-sized certificate of extendibility. The hardness also gives us a lower bound for learning coverage functions. We then study two natural notions of approximate extension, to account for errors in the data set. The two notions correspond roughly to multiplicative point-wise approximation and additive L_1 approximation. We show upper and lower bounds for both notions of approximation. In the second case we obtain nearly tight bounds

    Almost Optimal Streaming Algorithms for Coverage Problems

    Full text link
    Maximum coverage and minimum set cover problems --collectively called coverage problems-- have been studied extensively in streaming models. However, previous research not only achieve sub-optimal approximation factors and space complexities, but also study a restricted set arrival model which makes an explicit or implicit assumption on oracle access to the sets, ignoring the complexity of reading and storing the whole set at once. In this paper, we address the above shortcomings, and present algorithms with improved approximation factor and improved space complexity, and prove that our results are almost tight. Moreover, unlike most of previous work, our results hold on a more general edge arrival model. More specifically, we present (almost) optimal approximation algorithms for maximum coverage and minimum set cover problems in the streaming model with an (almost) optimal space complexity of O~(n)\tilde{O}(n), i.e., the space is {\em independent of the size of the sets or the size of the ground set of elements}. These results not only improve over the best known algorithms for the set arrival model, but also are the first such algorithms for the more powerful {\em edge arrival} model. In order to achieve the above results, we introduce a new general sketching technique for coverage functions: This sketching scheme can be applied to convert an α\alpha-approximation algorithm for a coverage problem to a (1-\eps)\alpha-approximation algorithm for the same problem in streaming, or RAM models. We show the significance of our sketching technique by ruling out the possibility of solving coverage problems via accessing (as a black box) a (1 \pm \eps)-approximate oracle (e.g., a sketch function) that estimates the coverage function on any subfamily of the sets

    March AB, March AB1: new March tests for unlinked dynamic memory faults

    Get PDF
    Among the different types of algorithms proposed to test static random access memories (SRAMs), March tests have proven to be faster, simpler and regularly structured. New memory production technologies introduce new classes of faults usually referred to as dynamic memory faults. A few March tests for dynamic fault, with different fault coverage, have been published. In this paper, we propose new March tests targeting unlinked dynamic faults with lower complexity than published ones. Comparison results show that the proposed March tests provide the same fault coverage of the known ones, but they reduce the test complexity, and therefore the test tim

    Fixed Rank Kriging for Cellular Coverage Analysis

    Full text link
    Coverage planning and optimization is one of the most crucial tasks for a radio network operator. Efficient coverage optimization requires accurate coverage estimation. This estimation relies on geo-located field measurements which are gathered today during highly expensive drive tests (DT); and will be reported in the near future by users' mobile devices thanks to the 3GPP Minimizing Drive Tests (MDT) feature~\cite{3GPPproposal}. This feature consists in an automatic reporting of the radio measurements associated with the geographic location of the user's mobile device. Such a solution is still costly in terms of battery consumption and signaling overhead. Therefore, predicting the coverage on a location where no measurements are available remains a key and challenging task. This paper describes a powerful tool that gives an accurate coverage prediction on the whole area of interest: it builds a coverage map by spatially interpolating geo-located measurements using the Kriging technique. The paper focuses on the reduction of the computational complexity of the Kriging algorithm by applying Fixed Rank Kriging (FRK). The performance evaluation of the FRK algorithm both on simulated measurements and real field measurements shows a good trade-off between prediction efficiency and computational complexity. In order to go a step further towards the operational application of the proposed algorithm, a multicellular use-case is studied. Simulation results show a good performance in terms of coverage prediction and detection of the best serving cell

    Assessing the Cell Phone Challenge to Survey Research in 2010

    Get PDF
    Updates an analysis of the complexity of including cell phone samples in surveys and issues of non-coverage bias. Examines weighted estimates from landline, cell, and combined samples; demographic and other characteristics of each group; and implications

    Random sequential adsorption and diffusion of dimers and k-mers on a square lattice

    Full text link
    We have performed extensive simulations of random sequential adsorption and diffusion of kk-mers, up to k=5k=5 in two dimensions with particular attention to the case k=2k=2. We focus on the behavior of the coverage and of vacancy dynamics as a function of time. We observe that for k=2,3k=2,3 a complete coverage of the lattice is never reached, because of the existence of frozen configurations that prevent isolated vacancies in the lattice to join. From this result we argue that complete coverage is never attained for any value of kk. The long time behavior of the coverage is not mean field and nonanalytic, with t−1/2t^{-1/2} as leading term. Long time coverage regimes are independent of the initial conditions while strongly depend on the diffusion probability and deposition rate and, in particular, different values of these parameters lead to different final values of the coverage. The geometrical complexity of these systems is also highlighted through an investigation of the vacancy population dynamics.Comment: 9 pages, 9 figures, to be published in the Journal of Chemical Physic
    • 

    corecore