49 research outputs found

    Minimum Cost Homomorphisms to Locally Semicomplete and Quasi-Transitive Digraphs

    Full text link
    For digraphs GG and HH, a homomorphism of GG to HH is a mapping $f:\ V(G)\dom V(H)suchthat such that uv\in A(G)implies implies f(u)f(v)\in A(H).If,moreover,eachvertex. If, moreover, each vertex u \in V(G)isassociatedwithcosts is associated with costs c_i(u), i \in V(H),thenthecostofahomomorphism, then the cost of a homomorphism fis is \sum_{u\in V(G)}c_{f(u)}(u).Foreachfixeddigraph. For each fixed digraph H,theminimumcosthomomorphismproblemfor, the minimum cost homomorphism problem for H,denotedMinHOM(, denoted MinHOM(H),canbeformulatedasfollows:Givenaninputdigraph), can be formulated as follows: Given an input digraph G,togetherwithcosts, together with costs c_i(u),, u\in V(G),, i\in V(H),decidewhetherthereexistsahomomorphismof, decide whether there exists a homomorphism of Gto to H$ and, if one exists, to find one of minimum cost. Minimum cost homomorphism problems encompass (or are related to) many well studied optimization problems such as the minimum cost chromatic partition and repair analysis problems. We focus on the minimum cost homomorphism problem for locally semicomplete digraphs and quasi-transitive digraphs which are two well-known generalizations of tournaments. Using graph-theoretic characterization results for the two digraph classes, we obtain a full dichotomy classification of the complexity of minimum cost homomorphism problems for both classes

    A graph theoretic proof of the complexity of colouring by a local tournament with at least two directed cycles

    Get PDF
    In this paper we give a graph theoretic proof of the fact that deciding whether a homomorphism exists to a fixed local tournament with at least two directed cycles is NP-complete. One of the main reasons for the graph theoretic proof is that it showcases all of the techniques that have been built up over the years in the study of the digraph homomorphism problem

    A graph theoretic proof of the complexity of colouring by a local tournament with at least two directed cycles

    Get PDF
    In this paper we give a graph theoretic proof of the fact that deciding whether a homomorphism exists to a fixed local tournament with at least two directed cycles is NP-complete. One of the main reasons for the graph theoretic proof is that it showcases all of the techniques that have been built up over the years in the study of the digraph homomorphism problem

    Minimum Cost Homomorphisms to Reflexive Digraphs

    Full text link
    For digraphs GG and HH, a homomorphism of GG to HH is a mapping $f:\ V(G)\dom V(H)suchthat such that uv\in A(G)implies implies f(u)f(v)\in A(H).Ifmoreovereachvertex. If moreover each vertex u \in V(G)isassociatedwithcosts is associated with costs c_i(u), i \in V(H),thenthecostofahomomorphism, then the cost of a homomorphism fis is \sum_{u\in V(G)}c_{f(u)}(u).Foreachfixeddigraph. For each fixed digraph H, the {\em minimum cost homomorphism problem} for H,denotedMinHOM(, denoted MinHOM(H),isthefollowingproblem.Givenaninputdigraph), is the following problem. Given an input digraph G,togetherwithcosts, together with costs c_i(u),, u\in V(G),, i\in V(H),andaninteger, and an integer k,decideif, decide if Gadmitsahomomorphismto admits a homomorphism to Hofcostnotexceeding of cost not exceeding k. We focus on the minimum cost homomorphism problem for {\em reflexive} digraphs H(everyvertexof (every vertex of Hhasaloop).ItisknownthattheproblemMinHOM( has a loop). It is known that the problem MinHOM(H)ispolynomialtimesolvableifthedigraph) is polynomial time solvable if the digraph H has a {\em Min-Max ordering}, i.e., if its vertices can be linearly ordered by <sothat so that i<j, s<rand and ir, js \in A(H)implythat imply that is \in A(H)and and jr \in A(H).WegiveaforbiddeninducedsubgraphcharacterizationofreflexivedigraphswithaMin−Maxordering;ourcharacterizationimpliesapolynomialtimetestfortheexistenceofaMin−Maxordering.Usingthischaracterization,weshowthatforareflexivedigraph. We give a forbidden induced subgraph characterization of reflexive digraphs with a Min-Max ordering; our characterization implies a polynomial time test for the existence of a Min-Max ordering. Using this characterization, we show that for a reflexive digraph H$ which does not admit a Min-Max ordering, the minimum cost homomorphism problem is NP-complete. Thus we obtain a full dichotomy classification of the complexity of minimum cost homomorphism problems for reflexive digraphs

    Surjective H-Colouring over reflexive digraphs

    Get PDF
    The Surjective H-Colouring problem is to test if a given graph allows a vertex-surjective homomorphism to a fixed graph H. The complexity of this problem has been well studied for undirected (partially) reflexive graphs. We introduce endo-triviality, the property of a structure that all of its endomorphisms that do not have range of size 1 are automorphisms, as a means to obtain complexity-theoretic classifications of Surjective H-Colouring in the case of reflexive digraphs. Chen (2014) proved, in the setting of constraint satisfaction problems, that Surjective H-Colouring is NP-complete if H has the property that all of its polymorphisms are essentially unary. We give the first concrete application of his result by showing that every endo-trivial reflexive digraph H has this property. We then use the concept of endo-triviality to prove, as our main result, a dichotomy for Surjective H-Colouring when H is a reflexive tournament: if H is transitive, then Surjective H-Colouring is in NL; otherwise, it is NP-complete. By combining this result with some known and new results, we obtain a complexity classification for Surjective H-Colouring when H is a partially reflexive digraph of size at most 3
    corecore