3,792 research outputs found

    Dichotomy for tree-structured trigraph list homomorphism problems

    Get PDF
    Trigraph list homomorphism problems (also known as list matrix partition problems) have generated recent interest, partly because there are concrete problems that are not known to be polynomial time solvable or NP-complete. Thus while digraph list homomorphism problems enjoy dichotomy (each problem is NP-complete or polynomial time solvable), such dichotomy is not necessarily expected for trigraph list homomorphism problems. However, in this paper, we identify a large class of trigraphs for which list homomorphism problems do exhibit a dichotomy. They consist of trigraphs with a tree-like structure, and, in particular, include all trigraphs whose underlying graphs are trees. In fact, we show that for these tree-like trigraphs, the trigraph list homomorphism problem is polynomially equivalent to a related digraph list homomorphism problem. We also describe a few examples illustrating that our conditions defining tree-like trigraphs are not unnatural, as relaxing them may lead to harder problems

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page

    Finding maximum k-cliques faster using lazy global domination

    Get PDF
    No abstract available
    • …
    corecore