712 research outputs found

    Verification and Control of Partially Observable Probabilistic Real-Time Systems

    Full text link
    We propose automated techniques for the verification and control of probabilistic real-time systems that are only partially observable. To formally model such systems, we define an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give a probabilistic temporal logic that can express a range of quantitative properties of these models, relating to the probability of an event's occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or to synthesise a controller for the model which makes it true. Our approach is based on an integer discretisation of the model's dense-time behaviour and a grid-based abstraction of the uncountable belief space induced by partial observability. The latter is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies, from the domains of computer security and task scheduling

    Verification and control of partially observable probabilistic systems

    Get PDF
    We present automated techniques for the verification and control of partially observable, probabilistic systems for both discrete and dense models of time. For the discrete-time case, we formally model these systems using partially observable Markov decision processes; for dense time, we propose an extension of probabilistic timed automata in which local states are partially visible to an observer or controller. We give probabilistic temporal logics that can express a range of quantitative properties of these models, relating to the probability of an event’s occurrence or the expected value of a reward measure. We then propose techniques to either verify that such a property holds or synthesise a controller for the model which makes it true. Our approach is based on a grid-based abstraction of the uncountable belief space induced by partial observability and, for dense-time models, an integer discretisation of real-time behaviour. The former is necessarily approximate since the underlying problem is undecidable, however we show how both lower and upper bounds on numerical results can be generated. We illustrate the effectiveness of the approach by implementing it in the PRISM model checker and applying it to several case studies from the domains of task and network scheduling, computer security and planning

    Towards Cancer Hybrid Automata

    Full text link
    This paper introduces Cancer Hybrid Automata (CHAs), a formalism to model the progression of cancers through discrete phenotypes. The classification of cancer progression using discrete states like stages and hallmarks has become common in the biology literature, but primarily as an organizing principle, and not as an executable formalism. The precise computational model developed here aims to exploit this untapped potential, namely, through automatic verification of progression models (e.g., consistency, causal connections, etc.), classification of unreachable or unstable states and computer-generated (individualized or universal) therapy plans. The paper builds on a phenomenological approach, and as such does not need to assume a model for the biochemistry of the underlying natural progression. Rather, it abstractly models transition timings between states as well as the effects of drugs and clinical tests, and thus allows formalization of temporal statements about the progression as well as notions of timed therapies. The model proposed here is ultimately based on hybrid automata, and we show how existing controller synthesis algorithms can be generalized to CHA models, so that therapies can be generated automatically. Throughout this paper we use cancer hallmarks to represent the discrete states through which cancer progresses, but other notions of discretely or continuously varying state formalisms could also be used to derive similar therapies.Comment: In Proceedings HSB 2012, arXiv:1208.315

    The Complexity of Codiagnosability for Discrete Event and Timed Systems

    Full text link
    In this paper we study the fault codiagnosis problem for discrete event systems given by finite automata (FA) and timed systems given by timed automata (TA). We provide a uniform characterization of codiagnosability for FA and TA which extends the necessary and sufficient condition that characterizes diagnosability. We also settle the complexity of the codiagnosability problems both for FA and TA and show that codiagnosability is PSPACE-complete in both cases. For FA this improves on the previously known bound (EXPTIME) and for TA it is a new result. Finally we address the codiagnosis problem for TA under bounded resources and show it is 2EXPTIME-complete.Comment: 24 pages

    A uniform approach to the complexity and analysis of succinct systems

    Get PDF
    “ This thesis provides a unifying view on the succinctness of systems: the capability of a modeling formalism to describe the behavior of a system of exponential size using a polynomial syntax. The key theoretical contribution is the introduction of sequential circuit machines as a new universal computation model that focuses on succinctness as the central aspect. The thesis demonstrates that many well-known modeling formalisms such as communicating state machines, linear-time temporal logic, or timed automata exhibit an immediate connection to this machine model. Once a (syntactic) connection is established, many complexity bounds for structurally restricted sequential circuit machines can be transferred to a certain formalism in a uniform manner. As a consequence, besides a far-reaching unification of independent lines of research, we are also able to provide matching complexity bounds for various analysis problems, whose complexities were not known so far. For example, we establish matching lower and upper bounds of the small witness problem and several variants of the bounded synthesis problem for timed automata, a particularly important succinct modeling formalism. Also for timed automata, our complexity-theoretic analysis leads to the identification of tractable fragments of the timed synthesis problem under partial observability. Specifically, we identify timed controller synthesis based on discrete or template-based controllers to be equivalent to model checking. Based on this discovery, we develop a new model checking-based algorithm to efficiently find feasible template instantiations. From a more practical perspective, this thesis also studies the preservation of succinctness in analysis algorithms using symbolic data structures. While efficient techniques exist for specific forms of succinctness considered in isolation, we present a general approach based on abstraction refinement to combine off-the-shelf symbolic data structures. In particular, for handling the combination of concurrency and quantitative timing behavior in networks of timed automata, we report on the tool Synthia which combines binary decision diagrams with difference bound matrices. In a comparison with the timed model checker Uppaal and the timed game solver Tiga running on standard benchmarks from the timed model checking and synthesis domain, respectively, the experimental results clearly demonstrate the effectiveness of our new approach.Diese Dissertation liefert eine vereinheitlichende Sicht auf die Kompaktheit von Systemen: die FĂ€higkeit eines Modellierungsformalismus, das Verhalten eines Systems exponentieller GrĂ¶ĂŸe mit polynomieller Syntax zu beschreiben. Der wesentliche theoretische Beitrag ist die EinfĂŒhrung von sequenziellen Schaltkreis-Maschinen als neues universelles Berechnungsmodell, das sich auf den zentralen Aspekt der Kompaktheit konzentriert. Die Dissertation demonstriert, dass viele bekannte Modellierungsformalismen, wie z.B. kommunizierende Zustandsmaschinen, linear-Zeit temporale Logik (LTL) oder gezeitete Automaten eine direkte Verbindung zu diesem Maschinenmodell aufzeigen. Sobald eine (syntaktische) Verbindung hergestellt ist, können viele KomplexitĂ€tsschranken fĂŒr strukturell beschrĂ€nkte sequenzielle Schaltkreis-Maschinen fĂŒr einen bestimmten Formalismus einheitlich ĂŒbernommen werden. Neben einer weitreichenden Vereinheitlichung unabhĂ€ngiger Forschungsrichtungen können auch zahlreiche KomplexitĂ€tsschranken fĂŒr Analyse-Probleme etabliert werden, deren genaue KomplexitĂ€t bisher noch nicht bekannt war. Zum Beispiel werden passende untere und obere Schranken des small witness Problems und mehrere Varianten des Synthese-Problems von Controllern mit beschrĂ€nkter GrĂ¶ĂŸe fĂŒr gezeitete Automaten bewiesen. Die theoretische Analyse deckt Fragmente geringerer KomplexitĂ€t des partiell informierten Syntheseproblems fĂŒr gezeitete Automaten auf. Es wird im Besonderen gezeigt, dass das gezeitete Syntheseproblem fĂŒr diskrete oder Vorlagen-basierte Controller Ă€quivalent zum Model Checking-Problem ist. Basierend auf dieser Einsicht wird ein neuartiger Model Checking-basierter Algorithmus zur effizienten Synthese von gĂŒltigen Instantiierungen von Vorlagen entwickelt. Der praktische Beitrag der Dissertation untersucht die Erhaltung von Kompaktheit in Analyse-Algorithmen durch die Benutzung symbolischer Datenstrukturen. Es wird ein allgemeiner Ansatz zur Kombination von Standard-Datenstrukturen vorgestellt, die jeweils bisher nur in Isolation verwendet werden konnten. Insbesondere wird fĂŒr die Analyse von Netzwerken von gezeiteten Automaten das Tool Synthia vorgestellt, welches binĂ€re Entscheidungs-Diagramme mit Differenzen-Matrizen verbindet. In einem experimentellen Vergleich mit den Tools Uppaal und Tiga wird klar die EffektivitĂ€t des neuen Ansatzes belegt

    Networked Supervisor Synthesis Against Lossy Channels with Bounded Network Delays as Non-Networked Synthesis

    Full text link
    In this work, we study the problem of supervisory control of networked discrete event systems. We consider lossy communication channels with bounded network delays, for both the control channel and the observation channel. By a model transformation, we transform the networked supervisor synthesis problem into the classical (non-networked) supervisor synthesis problem (for non-deterministic plants), such that the existing supervisor synthesis tools can be used for synthesizing networked supervisors. In particular, we can use the (state-based) normality property for the synthesis of the supremal networked supervisors, whose existence is guaranteed by construction due to our consideration of command non-deterministic supervisors. The effectiveness of our approach is illustrated on a mini-guideway example that is adapted from the literature, for which the supremal networked supervisor has been synthesized in the synthesis tools SuSyNA and TCT.Comment: This paper is under review for Automatic
    • 

    corecore