3,320 research outputs found

    The Complexity of Prenex Separation Logic with One Selector

    Full text link
    We first show that infinite satisfiability can be reduced to finite satisfiability for all prenex formulas of Separation Logic with k≥1k\geq1 selector fields (\seplogk{k}). Second, we show that this entails the decidability of the finite and infinite satisfiability problem for the class of prenex formulas of \seplogk{1}, by reduction to the first-order theory of one unary function symbol and unary predicate symbols. We also prove that the complexity is not elementary, by reduction from the first-order theory of one unary function symbol. Finally, we prove that the Bernays-Sch\"onfinkel-Ramsey fragment of prenex \seplogk{1} formulae with quantifier prefix in the language ∃∗∀∗\exists^*\forall^* is \pspace-complete. The definition of a complete (hierarchical) classification of the complexity of prenex \seplogk{1}, according to the quantifier alternation depth is left as an open problem

    On Spatial Conjunction as Second-Order Logic

    Full text link
    Spatial conjunction is a powerful construct for reasoning about dynamically allocated data structures, as well as concurrent, distributed and mobile computation. While researchers have identified many uses of spatial conjunction, its precise expressive power compared to traditional logical constructs was not previously known. In this paper we establish the expressive power of spatial conjunction. We construct an embedding from first-order logic with spatial conjunction into second-order logic, and more surprisingly, an embedding from full second order logic into first-order logic with spatial conjunction. These embeddings show that the satisfiability of formulas in first-order logic with spatial conjunction is equivalent to the satisfiability of formulas in second-order logic. These results explain the great expressive power of spatial conjunction and can be used to show that adding unrestricted spatial conjunction to a decidable logic leads to an undecidable logic. As one example, we show that adding unrestricted spatial conjunction to two-variable logic leads to undecidability. On the side of decidability, the embedding into second-order logic immediately implies the decidability of first-order logic with a form of spatial conjunction over trees. The embedding into spatial conjunction also has useful consequences: because a restricted form of spatial conjunction in two-variable logic preserves decidability, we obtain that a correspondingly restricted form of second-order quantification in two-variable logic is decidable. The resulting language generalizes the first-order theory of boolean algebra over sets and is useful in reasoning about the contents of data structures in object-oriented languages.Comment: 16 page

    Deciding Entailments in Inductive Separation Logic with Tree Automata

    Full text link
    Separation Logic (SL) with inductive definitions is a natural formalism for specifying complex recursive data structures, used in compositional verification of programs manipulating such structures. The key ingredient of any automated verification procedure based on SL is the decidability of the entailment problem. In this work, we reduce the entailment problem for a non-trivial subset of SL describing trees (and beyond) to the language inclusion of tree automata (TA). Our reduction provides tight complexity bounds for the problem and shows that entailment in our fragment is EXPTIME-complete. For practical purposes, we leverage from recent advances in automata theory, such as inclusion checking for non-deterministic TA avoiding explicit determinization. We implemented our method and present promising preliminary experimental results

    A Logic of Reachable Patterns in Linked Data-Structures

    Get PDF
    We define a new decidable logic for expressing and checking invariants of programs that manipulate dynamically-allocated objects via pointers and destructive pointer updates. The main feature of this logic is the ability to limit the neighborhood of a node that is reachable via a regular expression from a designated node. The logic is closed under boolean operations (entailment, negation) and has a finite model property. The key technical result is the proof of decidability. We show how to express precondition, postconditions, and loop invariants for some interesting programs. It is also possible to express properties such as disjointness of data-structures, and low-level heap mutations. Moreover, our logic can express properties of arbitrary data-structures and of an arbitrary number of pointer fields. The latter provides a way to naturally specify postconditions that relate the fields on entry to a procedure to the fields on exit. Therefore, it is possible to use the logic to automatically prove partial correctness of programs performing low-level heap mutations

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, I⊆SI \subseteq S and S∩E=∅S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE

    Positivity Problems for Low-Order Linear Recurrence Sequences

    Full text link
    We consider two decision problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem} (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, with complexity in the Counting Hierarchy for Positivity, and in polynomial time for Ultimate Positivity. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers

    On the Positivity Problem for Simple Linear Recurrence Sequences

    Full text link
    Given a linear recurrence sequence (LRS) over the integers, the Positivity Problem} asks whether all terms of the sequence are positive. We show that, for simple LRS (those whose characteristic polynomial has no repeated roots) of order 9 or less, Positivity is decidable, with complexity in the Counting Hierarchy.Comment: arXiv admin note: substantial text overlap with arXiv:1307.277

    Topological Semantics and Decidability

    Get PDF
    It is well-known that the basic modal logic of all topological spaces is S4S4. However, the structure of basic modal and hybrid logics of classes of spaces satisfying various separation axioms was until present unclear. We prove that modal logics of T0T_0, T1T_1 and T2T_2 topological spaces coincide and are S4.Wealsoexaminebasichybridlogicsoftheseclassesandprovetheirdecidability;aspartofthis,wefindoutthatthehybridlogicsof. We also examine basic hybrid logics of these classes and prove their decidability; as part of this, we find out that the hybrid logics of T_1andT2 and T_2 spaces coincide.Comment: presentation changes, results about concrete structure adde
    • …
    corecore