20,512 research outputs found

    Numerical Analysis

    Get PDF
    Acknowledgements: This article will appear in the forthcoming Princeton Companion to Mathematics, edited by Timothy Gowers with June Barrow-Green, to be published by Princeton University Press.\ud \ud In preparing this essay I have benefitted from the advice of many colleagues who corrected a number of errors of fact and emphasis. I have not always followed their advice, however, preferring as one friend put it, to "put my head above the parapet". So I must take full responsibility for errors and omissions here.\ud \ud With thanks to: Aurelio Arranz, Alexander Barnett, Carl de Boor, David Bindel, Jean-Marc Blanc, Mike Bochev, Folkmar Bornemann, Richard Brent, Martin Campbell-Kelly, Sam Clark, Tim Davis, Iain Duff, Stan Eisenstat, Don Estep, Janice Giudice, Gene Golub, Nick Gould, Tim Gowers, Anne Greenbaum, Leslie Greengard, Martin Gutknecht, Raphael Hauser, Des Higham, Nick Higham, Ilse Ipsen, Arieh Iserles, David Kincaid, Louis Komzsik, David Knezevic, Dirk Laurie, Randy LeVeque, Bill Morton, John C Nash, Michael Overton, Yoshio Oyanagi, Beresford Parlett, Linda Petzold, Bill Phillips, Mike Powell, Alex Prideaux, Siegfried Rump, Thomas Schmelzer, Thomas Sonar, Hans Stetter, Gil Strang, Endre Süli, Defeng Sun, Mike Sussman, Daniel Szyld, Garry Tee, Dmitry Vasilyev, Andy Wathen, Margaret Wright and Steve Wright

    A Riemannian low-rank method for optimization over semidefinite matrices with block-diagonal constraints

    Get PDF
    We propose a new algorithm to solve optimization problems of the form minf(X)\min f(X) for a smooth function ff under the constraints that XX is positive semidefinite and the diagonal blocks of XX are small identity matrices. Such problems often arise as the result of relaxing a rank constraint (lifting). In particular, many estimation tasks involving phases, rotations, orthonormal bases or permutations fit in this framework, and so do certain relaxations of combinatorial problems such as Max-Cut. The proposed algorithm exploits the facts that (1) such formulations admit low-rank solutions, and (2) their rank-restricted versions are smooth optimization problems on a Riemannian manifold. Combining insights from both the Riemannian and the convex geometries of the problem, we characterize when second-order critical points of the smooth problem reveal KKT points of the semidefinite problem. We compare against state of the art, mature software and find that, on certain interesting problem instances, what we call the staircase method is orders of magnitude faster, is more accurate and scales better. Code is available.Comment: 37 pages, 3 figure

    Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization

    Get PDF
    Interior point methods provide an attractive class of approaches for solving linear, quadratic and nonlinear programming problems, due to their excellent efficiency and wide applicability. In this paper, we consider PDE-constrained optimization problems with bound constraints on the state and control variables, and their representation on the discrete level as quadratic programming problems. To tackle complex problems and achieve high accuracy in the solution, one is required to solve matrix systems of huge scale resulting from Newton iteration, and hence fast and robust methods for these systems are required. We present preconditioned iterative techniques for solving a number of these problems using Krylov subspace methods, considering in what circumstances one may predict rapid convergence of the solvers in theory, as well as the solutions observed from practical computations

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte
    corecore