296 research outputs found

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers

    Knowledge Spaces and the Completeness of Learning Strategies

    Get PDF
    We propose a theory of learning aimed to formalize some ideas underlying Coquand's game semantics and Krivine's realizability of classical logic. We introduce a notion of knowledge state together with a new topology, capturing finite positive and negative information that guides a learning strategy. We use a leading example to illustrate how non-constructive proofs lead to continuous and effective learning strategies over knowledge spaces, and prove that our learning semantics is sound and complete w.r.t. classical truth, as it is the case for Coquand's and Krivine's approaches

    Lewis meets Brouwer: constructive strict implication

    Full text link
    C. I. Lewis invented modern modal logic as a theory of "strict implication". Over the classical propositional calculus one can as well work with the unary box connective. Intuitionistically, however, the strict implication has greater expressive power than the box and allows to make distinctions invisible in the ordinary syntax. In particular, the logic determined by the most popular semantics of intuitionistic K becomes a proper extension of the minimal normal logic of the binary connective. Even an extension of this minimal logic with the "strength" axiom, classically near-trivial, preserves the distinction between the binary and the unary setting. In fact, this distinction and the strong constructive strict implication itself has been also discovered by the functional programming community in their study of "arrows" as contrasted with "idioms". Our particular focus is on arithmetical interpretations of the intuitionistic strict implication in terms of preservativity in extensions of Heyting's Arithmetic.Comment: Our invited contribution to the collection "L.E.J. Brouwer, 50 years later

    A functional interpretation for nonstandard arithmetic

    Get PDF
    We introduce constructive and classical systems for nonstandard arithmetic and show how variants of the functional interpretations due to Goedel and Shoenfield can be used to rewrite proofs performed in these systems into standard ones. These functional interpretations show in particular that our nonstandard systems are conservative extensions of extensional Heyting and Peano arithmetic in all finite types, strengthening earlier results by Moerdijk, Palmgren, Avigad and Helzner. We will also indicate how our rewriting algorithm can be used for term extraction purposes. To conclude the paper, we will point out some open problems and directions for future research and mention some initial results on saturation principles

    Learning, realizability and games in classical arithmetic

    Get PDF
    PhDAbstract. In this dissertation we provide mathematical evidence that the concept of learning can be used to give a new and intuitive computational semantics of classical proofs in various fragments of Predicative Arithmetic. First, we extend Kreisel modi ed realizability to a classical fragment of rst order Arithmetic, Heyting Arithmetic plus EM1 (Excluded middle axiom restricted to 0 1 formulas). We introduce a new realizability semantics we call \Interactive Learning-Based Realizability". Our realizers are self-correcting programs, which learn from their errors and evolve through time, thanks to their ability of perpetually questioning, testing and extending their knowledge. Remarkably, that capability is entirely due to classical principles when they are applied on top of intuitionistic logic. Secondly, we extend the class of learning based realizers to a classical version PCFClass of PCF and, then, compare the resulting notion of realizability with Coquand game semantics and prove a full soundness and completeness result. In particular, we show there is a one-to-one correspondence between realizers and recursive winning strategies in the 1-Backtracking version of Tarski games. Third, we provide a complete and fully detailed constructive analysis of learning as it arises in learning based realizability for HA+EM1, Avigad's update procedures and epsilon substitution method for Peano Arithmetic PA. We present new constructive techniques to bound the length of learning processes and we apply them to reprove - by means of our theory - the classic result of G odel that provably total functions of PA can be represented in G odel's system T. Last, we give an axiomatization of the kind of learning that is needed to computationally interpret Predicative classical second order Arithmetic. Our work is an extension of Avigad's and generalizes the concept of update procedure to the trans nite case. Trans- nite update procedures have to learn values of trans nite sequences of non computable functions in order to extract witnesses from classical proofs
    • …
    corecore